Reading view

There are new articles available, click to refresh the page.

Practical ChatGPT for Academics: Deep Research, Code & LaTeX — Live Demo

Description: A 2.5 hour live-demo seminar on practical, high-impact use of ChatGPT in academia: effective prompting and voice tactics, verified Deep Research, programmatic problem-solving (live code — digital filter design), figure creation from text/screenshots, and LaTeX outputs (Beamer slides & posters in Overleaf). Hands-on participation optional.

Detailed description: This seminar provides a comprehensive introduction to using ChatGPT as a versatile academic assistant for the entire research workflow. Participants will see, step by step, how to use ChatGPT to perform structured literature reviews, locate relevant open-source repositories, and organize research findings efficiently. The emphasis is on verifiable, citation-based outputs and critical interaction with the model rather than passive use. Real-world examples will show how Deep Research mode can complement traditional search engines and databases when used responsibly.

A major part of the seminar focuses on practical code generation and execution. Attendees will observe how ChatGPT can design, implement, and run small-scale analytical projects directly inside the chat interface, including numerical simulations and data visualizations. The demonstration will include a digital filter design example, highlighting verification strategies, interpretation of results, and common pitfalls. This section will also touch on multimodal features such as generating figures from text or screenshots, showing how image understanding and textual reasoning combine to support reproducible research workflows.

Finally, the seminar will demonstrate how ChatGPT can support academic writing and dissemination. Participants will learn how to automatically produce Beamer presentations and scientific posters directly from LaTeX papers in Overleaf, ensuring consistency between research outputs and presentations. The session concludes with a short bonus demo of text-driven 3D scene generation to illustrate creative applications of language-to-visual synthesis. Throughout the event, best practices for prompting, critical review, and AI literacy will be emphasized to ensure reliable and ethical use of generative models in research and education.

Date and time: 22. October 2025  from 16.00 - 18.30

Language: English

Level: Intermediate

Location: Virtual (Zoom) - link will only be available to registered participants

Target audience: Researchers, graduate and undergraduate students, lecturers, and technical staff in academia who want to integrate ChatGPT effectively into research, coding, writing, and presentation workflows.

Max. number of participants: 300

Prerequisites (optional): 

•    Overleaf account; 
•    ChatGPT (Plus/Team/Pro)

Workflow: Live Zoom session with screen-shared demonstrations. The seminar begins with prompting and voice tactics, followed by Deep Research for literature and repository discovery, live Python code execution (digital filter example), figure generation from text or screenshots, and creation of Beamer presentations and posters in Overleaf. Concludes with a short bonus demo (text-described 3D scene) and Q&A.

Learning outcomes:

 • Effective prompting and voice/dictation for complex academic tasks.
• Verified literature and code-repository search.
• Using ChatGPT’s built-in code execution for analysis and visualization.
• Generating publication-quality figures from text or screenshots.
• Creating Beamer presentations and posters from LaTeX papers in Overleaf.
• Minimizing hallucinations and improving response reliability.

 

Organizator:

 

Lecturers:

Assoc. prof. dr. Janez Perš

Associate professor at the Faculty of Electrical Engineering, University of Ljubljana, and a member of the Laboratory for Machine Intelligence (LMI). His research and teaching span computer vision, machine intelligence, and embedded systems, with a strong focus on applying artificial intelligence to real-world problems such as autonomous vehicles, robotics, and precision agriculture. He has been an early and active adopter of AI-assisted tools in research, teaching, and academic communication, exploring how systems like ChatGPT can augment productivity, creativity, and critical thinking in academic contexts.

janez.pers@fe.uni-lj.si 

 

as. dr. Janez Križaj
Dr. Križaj is a postdoctoral researcher at the Laboratory for Machine Intelligence, Faculty of Electrical Engineering, University of Ljubljana. His research focuses on computer vision, biometrics, and deep learning.
janez.krizaj@fe.uni-lj.si 

Delavnica: Osnove globokega učenja

Kratek opis: Ta tečaj nudi praktičen uvod v globoko učenje, zmogljivo tehniko umetne inteligence, ki se uporablja v panogah, kot so zdravstvo, maloprodaja in avtomobilizem. Študenti se bodo naučili trenirati modele globokega učenja z uporabo orodij, kot je PyTorch, s poudarkom na ključnih konceptih, kot so konvolucijske nevronske mreže (CNN), povečevanje podatkov in prenos učenja. Skozi praktične vaje bodo udeleženci pridobili izkušnje pri gradnji modelov za klasifikacijo slik, obdelavo naravnega jezika ipd. Ob koncu tečaja boste pridobili veščine za reševanje projektov globokega učenja s sodobnimi okviri in pristopi.

Podrobnejši opis: Ta tečaj ponuja obsežen uvod v poglobljeno učenje, ključno tehnologijo, ki spodbuja napredek v panogah, kot so zdravstvo, maloprodaja in avtomobilizem. Globoko učenje uporablja večplastne nevronske mreže za reševanje kompleksnih nalog, kot so prepoznavanje slik, prevajanje jezikov in obdelava govora. Cilj tečaja je opremiti študente s temeljnimi veščinami, potrebnimi za usposabljanje in uvajanje modelov globokega učenja z uporabo sodobnih orodij, kot je PyTorch. S praktičnimi aplikacijami, ki segajo od zaznavanja predmetov do prilagojenih izkušenj, se boste naučili, kako uporabiti umetno inteligenco za težave v resničnem svetu.

Skozi tečaj boste raziskovali pomembne koncepte globokega učenja, kot so konvolucijske nevronske mreže (CNN), povečanje podatkov in prenos učenja. Te tehnike so bistvene za izboljšanje natančnosti in učinkovitosti modela, zlasti pri delu z velikimi, zapletenimi nabori podatkov. Kurikulum zajema tudi uporabo vnaprej pripravljenih modelov, ki omogočajo hitrejše usposabljanje modelov z izkoriščanjem obstoječega znanja. Poleg tega boste raziskali napredne teme, kot so ponavljajoče se nevronske mreže (RNN) in obdelava naravnega jezika (NLP), ki so ključne za zaporedne podatkovne naloge in besedilne aplikacije.

Ob koncu tečaja boste svoje znanje uporabili v končnem projektu, kjer boste s tehnikami računalniškega vida zgradili model klasifikacije objektov. Izboljšali boste delovanje modela z učenjem prenosa in povečanjem podatkov ter pridobili dragocene izkušnje pri optimizaciji modelov z omejenimi podatki. Tečaj vas bo vodil tudi skozi nastavitev lastnega razvojnega okolja AI in vas tako pripravil na samostojno izvajanje projektov globokega učenja. Ne glede na to, ali ste začetnik pri umetni inteligenci ali želite razširiti svoje spretnosti, ta tečaj zagotavlja trdno osnovo za vse, ki jih zanima hitro razvijajoče se področje globokega učenja.

Ob koncu delavnice lahko udeleženci pridobijo uradni certifikat Deep Learning Institute pri NVIDIA.

Zahtevnost: Osnovna

Jezik: Slovenski

Opis poteka izobraževanja: Delavnica poteka na daljavo preko brskalnika na oblačni infrastrukturi AWS.

Priporočeno predznanje: Razumevanje osnovnih konceptov programiranja v Python 3, kot so funkcije, zanke, slovarji in polja; poznavanje podatkovnih struktur Panda; in razumevanje, kako izračunati regresijsko črto.

Ciljna publika: Študenti računalništva, inženirji, raziskovalci, razvijalci ter vsi, ki želijo razumeti, kako ta tehnologija deluje.

Na izobraževanju pridobljena znanja:

  • Naučite se osnovnih tehnik in orodij, potrebnih za usposabljanje modela globokega učenja
  •  Pridobite izkušnje s pogostimi podatkovnimi tipi globokega učenja in arhitekturami modelov
  • Izboljšajte nabore podatkov z razširitvijo podatkov, da izboljšate natančnost modela
  • Izkoristite prenos učenja med modeli za doseganje učinkovitih rezultatov z manj podatkov in računanja
  • Zgradite samozavest, da se lotite lastnega projekta s sodobnim ogrodjem poglobljenega učenja

 

Omejitev števila udeležencev: 30

Virtualna lokacija: MS Teams

Organizator: UM FERI, NVIDIA


Predavatelji:

Ime: Domen Verber
Opis: Domen Verber je docent na Fakulteti za elektrotehniko in računalništvo Univerze v Mariboru (UM FERI) ter ambasador NVIDIA Deep Learning Institute za Univerzo v Mariboru in njihov specialist za umetno inteligenco in HPC. S problematiko HPC in umetne inteligence se ukvarja že več kot 25 let.
  domen.verber@um.si, deep.learning@um.si

 

 

Ime: Jani Dugonik 
Opis: Jani Dugonik je raziskovalec na Fakulteti za elektrotehniko, računalništvo in informatiko Univerze v Mariboru (UM FERI). Ukvarja se z raziskavami na področjih obdelave naravnega jezika, evolucijskih algoritmov in umetne inteligence ter kibernetske in informacijske varnosti..
  jani.dugonik@um.si

 


Seminar: Usage of GIT with Gitlab, Github and Bitbucket

SLO: Seminar bo potekal virtualno. Predstavitev bo potekala 1h, po predstavitvi bo predavatelj na voljo za vprašanja. Upravljanje izvorne kode (SCM) z Gitom nudi podporo za različice z razvejanjem in združevanjem v skupnem razvoju. Git kot porazdeljeni SCM je običajno povezan z osrednjim strežnikom Git, ki ponuja spletno funkcionalnost za pregled virov, povlečenje zahtev in integracijo z drugimi storitvami, kot sta stalna integracija (CI) in dokumentacija kode. Na tem seminarju si bomo ogledali razvojni proces Git ter priljubljene strežnike in integrirane storitve (CI, Read the docs). Kako upravljati z različicamin velikih datotek v okolju HPC, skupaj s kodo in dokumentacijo, bomo razpravljali s praktičnega vidika in izvora podatkov.

ENG: The seminar will be held virtually. The presentation will last 1 hour, after the presentation the lecturer will be available for questions. Source code management (SCM) with Git provides support for versioning with branching and merging in a collaborative work. Git as distributed SCM is usually connected to a central Git server that provides web functionality for source review, pull requests and integration with other services such as continuous integration (CI) and code documentation. In this seminar we will take a look into Git development process and popular servers and integrated services (CI, Read the docs). How to Git version large files in HPC environment along with code and documentation will be discussed from practical and data provenance viewpoint.

 

Date and time: 23. 10. 2025  od 15.00 - 16.30

Language: According to applications

Organiser:

Lecturer:

Name: Leon Kos
  Izr. prof. dr. Leon Kos je docent na ULFS in je usposobljen za več tem, povezanih s HPC. Je kvalificirani trener iz programa HLRS za usposabljanje in je bil ključni razvijalec PRACE MOOC Managing Big Data with R in Hadoop. Bil je vodja PRACE poletja HPC treningov v letih 2014, 2015, 2016, 2017, 2018 in 2019. Je tudi slovenski nosilec več državnih in mednarodnih projektov.
E-mail: leon.kos@fs.uni-lj.si

Delavnica: Vsebniki na superračunalnikih

Opis: Raziskovalci se pogosto spopadajo z velikimi računskimi izzivi, na primer pri analizi velikih podatkov, fizikalnih simulacijah, računski kemiji, računski biologiji, napovedovanju vremena, simulacijah dinamike tekočin ipd. Za reševanje mnogih problemov je pogosto na voljo ustrezna programska oprema, ki pa jo je potrebno prilagoditi za izvajanje na izbranem superračunalniku.

Na delavnici si bomo ogledali več načinov nalaganja programske opreme: v domačo mapo, preko okoljskih modulov in vsebnikov. Spoznali se bomo s konceptom virtualnih strojev in vsebnikov ter osvetlili razlike med zasnovo vsebnikov Docker in Apptainer. Naučili se bomo uporabiti že pripravljene vsebnike in na praktičnih primerih spoznali, kako zgraditi enostaven vsebnik Apptainer ter ga zagnati v superračunalniškem okolju. V nadaljevanju si bomo ogledali, kako v vsebnik vključiti podporo za grafične pospeševalnike in procesiranje na več vozliščih.

Delavnica bo praktično usmerjena, vaje bomo izvajali na modernem sistemu HPC.

Zahtevnost: Napredna

Jezik: Slovenski

Termin: 11. 11. 2025 od 10:00 - 15:00

Omejitev števila udeležencev: 30

Virtualna lokacija: ZOOM (povezava bo na voljo samo registriranim udeležencem)

Ciljna publika: raziskovalci, inženirji, študenti, vsi ki potrebujejo več računskih virov pri svojem delu

Priporočeno predznanje: 

  • opravljena delavnica Osnove superračunalništva,
  • razumevanje zgradbe računalniške gruče,
  • delo preko odjemalca SSH (ukazna vrstica, prenašanje datotek),
  • osnovno poznavanje vmesne programske opreme Slurm,
  • osnovno znanje operacijskega sistema Linux in lupine Bash
  • osnovno poznavanje programskega jezika Python

 

Na izobraževanju pridobljena znanja:

  • poznavanje vmesne programske opreme Slurm
  • razumevanje okoljskih modulov in vsebnikov
  • uporaba obstoječih vsebnikov Docker in Apptainer
  • gradnja lastnih vsebnikov Apptainer za izvajanje izbranih programov na superračunalniški gruči
  • raba različnih računskih virov v okoljskih modulih in vsebnikih (procesorska jedra, grafični pospeševalniki, vozlišča)

 

Organizator:

FRI logo

Predavatelja:

Ime: Davor Sluga
Opis: https://fri.uni-lj.si/sl/o-fakulteti/osebje/davor-sluga 
E-mail: davor.sluga@fri.uni-lj.si
Ime: Ratko Pilipović
Opis: https://www.fri.uni-lj.si/sl/o-fakulteti/osebje/ratko-pilipovic
E-mail: ratko.pilipovic@fri.uni-lj.si

 


Dnevi SLING

Dnevi slovenskega superračunalniškega omrežja (Dnevi SLING) so ključni dogodek, na katerem predstavljamo najnovejše dosežke na področju superračunalništva, delovanje kompetenčnega centra ter primere dobre prakse uporabe HPC infrastrukture v raziskovalnem in industrijskem okolju. Letos bo dogodek potekal od 19. do 21. novembra v okviru Arnesove konference Mreža znanja v hotelu Four Points by Sheraton Ljubljana Mons.

Poleg bogatega programa s področja superračunalništva bodo vključeni tudi novi tematski sklopi, kot so umetna inteligenca, Tovarna UI, povezovanje superračunalništva in odprte znanosti ter številne druge aktualne teme.

Več informacij, program in prijava bodo v kratkem objavljeni na spletni strani Mreže znanja.

Workshop: CuPY - calculating on GPUs made easy

Description: Scientific computing increasingly relies on GPU acceleration to handle large datasets and complex numerical tasks. While traditional CPU-based workflows remain essential, modern research benefits greatly from learning how to harness GPUs in an accessible way through Python. CuPY provides a NumPy-like interface that enables users to offload array computations to the GPU with minimal code changes.

On Day 1, we will cover the motivation for GPU computing, discuss what GPUs are best suited for, and set up a self-contained environment. Participants will learn to use conda/mamba for environment management, install and configure a GPU-ready CuPY setup, and verify its functionality.  On Day 2, we will focus on the CuPY library itself. We will explore its syntax and functionality, emphasizing similarities and differences with NumPy. Through a series of simple examples, and culminating in a more involved case study, participants will gain the skills to confidently integrate GPU acceleration into their Python workflows.

Difficulty: Beginner

Date & Time:

Day 1: 26. 11. 2025  from 13.00 to 17.00

Day 2: 27. 11. 2025 from 13.00 to 17.00

Language: English

Prerequisite knowledge: Basic knowledge of Linux, the Terminal and some Python

Target audience: The workshop is intended for beginners and others interested in using GPUs with python.

Virtual location: ZOOM (only registered participants will see ZOOM link)

Workflow: The training is live over zoom, in the afternoon. The workshop will combine lecture and practical parts, where your own laptop suffices is needed to gain access to the ARNES gpu cluster.

 

Organizer:

Univerza v Ljubljani v leto 2024 ...

Lecturer: 

Name: Luka Leskovec
Description: Scientist and educationalist involved in theoretical physics and supercomputing
E-mail: luka.leskovec@fmf.uni-lj.si

Delavnica: ChatGPT za inženirje – Primer razvoja in implementacije izgubnega zvočnega enkoderja/dekoderja (ChatGPT, Python, C, Github)

Opis: Intenzivna, praktična delavnica za inženirje, kjer bodo udeleženci s pomočjo ChatGPT (GPT5-thinking) in ChatGPT Codex (research preview) zasnovali in implementirali učinkovit psihoakustični zvočni enkoder/dekoder: najprej prototip v Pythonu, nato prenos v čisti C.

Za to delavnico rabite svojo opremo. Podrobneje so zahteve specificirane na koncu strani. Kot izvajalci vam ne moremo zagotoviti ne računalnikov in ne potrebnih ChatGPT licenc!

Podrobnejši opis: V prvem delu predstavimo teoretične temelje perceptualnega kodiranja zvoka: osnove psihoakustike (maskiranje), časno‑frekvenčne transformacije (DCT, okna), kvantizacijo in entropijsko kodiranje. Nato  z vodenimi iterativnimi poizvedbami modela GPT5-thinking oz GPT5-pro (za udeležence ki imajo naročnini Teams ali Pro) razvijemo prototip para enkoder/dekoder v pythonu. (framing, DCT, enostavni psihoakustični model, brezizgubno kodiranje bitnega toka, optimizacija bitov).   

V drugem delu vzpostavimo GitHub repozitorij, dodamo teste ter s ChatGPT Codex izvedemo prepis v C (NE C++), skupaj z avtomatskim refaktoriranjem in avtomatskim dokumentiranjem kode. Delavnica zahteva uporabo lastnega prenosnika z inštaliranim Linux ali Windows z WSL; poudarek je izdelavi prototipa ki je lahko deliverable na nivoju TRL 3-4 ali višjega.

Zahtevnost: Napredna

Priporočeno predznanje: Osnove uporabe ChatGPT; Linux ali Windows z WSL (Windows subsystem for Linux, sam Windows ni podprt!); Git in GitHub; Osnovno znaje python (NumPy/SciPy); osnovno poznavanje signalne obdelave (FFT/DCT) in entropijskega kodiranja, ali želja naučiti se teh osnov; osnove jezika C.

Ciljna publika: Inženirji in raziskovalci s področij računalništva, elektrotehnike, strojništva, fizike; razvijalci programske opreme; uporabniki HPC.

Omejitev števila udeležencev: 15

Na izobraževanju pridobljena znanja:

• Razumevanje temeljnih pojmov perceptualnega kodiranja zvoka (maskiranje, kritični pasovi).
• Poznavanje cevovoda DCT + brezizgubno kodiranje: framing, okna, kvantizacija, entropijsko kodiranje.
• Zasnova in implementacija delujočega para audio enkoder-dekoder v Pythonu.
• Uporaba ChatGPT5 (thinking/pro) za iterativno prototipiranje, razlago in preverjanje kode.
• Prenos Python kode v ANSI C s ChatGPT Codex, osnovne optimizacije in testiranje.
• Delo z Git/GitHub (vejitev, pull requests) 

Opis poteka izobraževanja: Uvod → teoretične osnove → voden razvoj Python prototipa → organizacija kode in testi → GitHub → prenos v C s ChatGPT Codex → optimizacija/refaktoriranje → zaključek in priporočila.

Lokacija - fizična: Fakulteta za elektrotehniko - Multimedijska dvorana, Tržaška cesta 25, 1000 Ljubljana

Pozor: pogoj za udeležbo so:

1. Lastni prenosnik in lastne slušalke. Na prenosniku mora biti inštaliran delujoč Linux ali Windows z WSL2. Preverite delovanje s kodo ki jo najdete na koncu strani (Github). Koda, ki jo bomo pisali bo specifična za Linux, da bo delo enostavneje. Uporabniki Windows 10 z WSL2 boste imeli morda probleme z usposobitvijo zvoka v realnem času, zato bomo predvideli tudi izvoz v WAV datoteke, ki jih boste predvajali na slušalkah, tako da bo delo vseeno možno. Če želite, lahko poskusite inštalitati GWSL - v Microsoft Store izberite "Trial" ki je polnoma ekvivalenten plačljivi verziji: https://opticos.github.io/gwsl/

2. Lastna naročnina na ChatGPT najmanj nivoja Plus (Team ali Pro sta seveda tudi ok). Če imate  deljeno naročnino poskrbite, da to ne bo blokiralo vašega dela!

Na koncu strani najdete testno kodo s katero preizkusite ali vam zvok deluje ok. Preizkusite preden se prijavite!

 




 

Organizator:

 

Predavatelji:

Janez Perš
JRaziskovalec in mentor na UL FE; področja: obdelava signalov, računalniški vid, razvoj raziskovalne programske opreme in uporaba velikih jezikovnih modelov v inženirskih projektih. 
janez.pers@fe.uni-lj.si 

 

Janez Križaj
Janez Križaj je raziskovalec na Fakulteti za elektrotehniko Univerze v Ljubljani. Njegova področja raziskovanja so globoko učenje, računalniški vid, biometrija, razpoznavanje obrazov, razpoznavanje vzorcev in obdelava slik. 
janez.krizaj@fe.uni-lj.si 

Vabilo na predstavitev SLINGa za Javni sektor

Kako narediti učinkovito javno upravo z uporabo superračunalniške infrastrukture in umetne inteligence

 

Vabljeni na brezplačni spletni dogodek, kjer boste izvedeli, kako lahko s pomočjo superračunalništva (HPC) in umetne inteligence (AI) izboljšate storitve javne uprave. Večje računalniške zmogljivosti so že na voljo v Slovenskem superračunalniškem omrežju SLING. Potrebovali jih boste za hitrejše obdelave in povezovanje velike količine podatkov in dokumentov, izvajanje kompleksnih analiz, modeliranje, simulacije in vizualizacije, aplikacije umetne inteligence (AI), razvoj velikih jezikovnih modelov (LLM) in analiziranje velepodatkov (HPDA).

Kdaj: 11. 9. 2025, 11:00-12:30

Lokacija: ZOOM

Na spletnem seminarju boste:

  • spoznali prednosti superračunalniške infrastrukture za hitrejše obdelave in povezovanje velike količine podatkov in dokumentov, ki jih generirajo različne organizacije javnega sektorja
  • izvedeli, kako brezplačno dostopati do tehnoloških okolij in superračunalniške infrastrukture v Sloveniji in Evropi,
  • izvedeli, kako brezplačno uporabljati podporo Nacionalnega kompetenčnega centra SLING.

Program dogodka:

  • Predstavitev Nacionalnega kompetenčnega centra SLING, dr. Jan Jona Javoršek, Inštitut Jožef Stefan
  • Demonstracija dostopa do testnih okolij Slovenskega superračunalniškega omrežja SLING, doc. dr. Ratko Pilipović, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani
  • Predstavitev praktične uporabe: Pogovorni sistemi in veliki jezikovni modeli v javni upravi, dr. Mladen Borovič, Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru
  • Predstavitev praktične uporabe: Uporaba umetne inteligence za analizo preiskovalnih podatkov, izr. prof. dr. Niko Lukač, Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru
  • Predstavitev praktične uporabe: Spremljanje stanja prostora z zlivanjem heterogenih podatkovnih virov in tokov, prof. dr. Domen Mongus, Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru
  • Diskusija: Kako lahko NCC SLING in javna uprava sodelujeta na področju superačunalništva in umetne inteligence.

 

Udeležba je brezplačna. Zaradi omejenega števila udeležencev je predhodna prijava na dogodek OBVEZNA. 

Vsi prijavljeni boste dan pred pričetkom usposabljanja na vašo elektronsko pošto prejeli opomnik s povezavo za dostop do usposabljanja. 

Lepo vabljeni.

Organizatorji dogodka: Ministrstvo za digitalno preobrazbo, Ministrstvo za javno upravo, Nacionalni kompetenčni center SLING

 

REGISTRACIJA

Delavnica: Osnove superračunalništva

Opis: Na delavnici se bomo seznanili z zgradbo računskih gruč in programsko opremo na njih ter zagnali svoje prve naloge. Naučili se boste razlikovati med prijavnimi vozlišči, računskimi vozlišči, ter sistemi za shranjevanje podatkov. Spoznali boste vlogo operacijskega sistema, vmesne programske opreme Slurm in uporabniških programov. Povezali se boste na prijavna vozlišča, prenašali datoteke na in iz superračunalnika, zaganjali naloge, s katerimi bomo obdelovali video posnetke, in spremljali izvajanje nalog.

Zahtevnost: Osnovna

Jezik: Slovenski

Termin: 23. 09. 2025 od 10.00 - 15.00

Omejitev števila udeležencev: 30

Virtualna lokacija: ZOOM 

Ciljna publika: raziskovalci, inženirji, študenti, vsi ki potrebujejo več računskih virov pri svojem delu

Na izobraževanju pridobljena znanja:

  • Razumevanje delovanja in zgradbe superračunalnikov
  • Uporaba vmesne programske opreme SLURM
  • Osnovna uporaba programskih okolij in vsebnikov
  • Upravljanje z datotekami in poganjanje nalog
  • Osnovna obdelava videoposnetkov

 

Organizator:

FRI logo

Predavatelji:

Ime: Davor Sluga
Opis: https://fri.uni-lj.si/sl/o-fakulteti/osebje/davor-sluga 
E-mail: davor.sluga@fri.uni-lj.si
Ime: Ratko Pilipović
Opis: https://www.fri.uni-lj.si/sl/o-fakulteti/osebje/ratko-pilipovic
E-mail: ratko.pilipovic@fri.uni-lj.si

 


Delavnica: Uporabljajmo superračunalnike!

Opis: Delavnica je namenjena raziskovalcem, inženirjem, študentom in drugim, ki ste spoznali, da potrebujete več računskih virov, kot vam jih ponujajo običajni računalniki. Delavnica bo potekala v okviru konference IEEE ERK 2025.

Na delavnici se bomo seznanili s slovensko superračunalniško infrastrukturo in možnostmi dostopa do nje. V okviru delavnice bomo delali na eni od superračunalniških gruč - povezali se bomo na prijavno vozlišče, prenašali datoteke na in iz superračunalnika ter zaganjali naloge in spremljali njihvo izvajanje preko vmesne programske opreme Slurm.

Delavnica je brezplačna. Na delavnico pridite s svojim prenosnim računalnikom, mi vam bom priskrbeli poverilnice na superračunalniški gruči.

Jezik: Slovenski

Zahtevnost: Osnovna

Omejitev števila udeležencev: 15

Termin: Petek, 26. 9. 2025  9:00-12:00

Lokacija-fizična:  Hotel Bernardin, Portorož

Priporočeno predznanje: /

Ciljna publika: raziskovalci, inženirji, študenti, vsi ki potrebujejo več računskih virov pri svojem delu

Na izobraževanju pridobljena znanja:

  • Razumevanje delovanja in zgradbe superračunalnikov
  • Uporaba vmesne programske opreme SLURM
  • Osnovna uporaba programskih okolij in vsebnikov
  • Upravljanje z datotekami in poganjanje nalog
  • Osnovna obdelava videoposnetkov

 

Organizatorja:

  • Konferenca IEEE ERK 2025 in

 

FRI logo

Predavatelji:

Ime: Davor Sluga
Opis: https://fri.uni-lj.si/sl/o-fakulteti/osebje/davor-sluga 
E-mail: davor.sluga@fri.uni-lj.si
Ime: Ratko Pilipović
Opis: https://www.fri.uni-lj.si/sl/o-fakulteti/osebje/ratko-pilipovic
E-mail: ratko.pilipovic@fri.uni-lj.si

 


RNA Salon #1

The inaugural Ljubljana RNA Salon will bring together Ljubljana-based researchers working on diverse RNA-related topics.

In the first part, three short talks (15+5 minutes) will be given by the members of the participating groups. The second part of the meeting will provide space for informal discussion and exchange of ideas between the participants over food and drinks.

SiNOG 9.0

SiNOG (Slovenian Network Operators Group) je neodvisna skupnost, ki združuje omrežne strokovnjake različnih področij. Ustanovljena je bila z namenom povečati kakovost, učinkovitost, stabilnost in varnost slovenskih omrežij in omrežnih storitev ter dejavno vzpodbujati izmenjavo idej, znanja in dobre prakse med strokovnjaki v Sloveniji ter širše. Srečujemo se na letnem srečanju in tematskih delavnicah. Osrednji dogodek skupnosti je letno SINOG srečanje, ki bo letos že deveto po vrsti.

Ker cenimo in spoštujemo vaš čas smo se tudi letos na vašo željo odločili, da strnemo vsa predavanja na eno popoldne in vam tako omogočimo lažjo udeležbo na vseh predavanjih SINOG srečanja.

SiNOG 9.0 srečanje nadaljuje dobro prakso predhodnih IPv6 in SINOG srečanj in združuje visoko-tehnološka predavanja vrhunskih mednarodnih in domačih strokovnjakov o aktualnih izzivih, reševanju le-teh in kratke predstavitve dosežkov domačih podjetij in organizacij.

Kje: Fakulteta za Elektrotehniko, Tržaška c. 25, 1000 Ljubljana (Google Maps)
Organizatorji: Upravni odbor SINOGLTFE in Arnes
Kdaj: 16. september 2025
Cena udeležbe: brezplačno
Omejitev udeležencev: 150 (prijava je obvezna; po zapolnitvi kapacitet bo uvedena čakalna lista)

Benjamin Fuks: Seeking a coherent explanation of LHC excesses for compressed spectra

The most recent searches by the LHC collaborations in final states with soft leptons and missing transverse energy show mild excesses which can result from decays of electroweakinos featuring a compressed spectrum. We demonstrate that while recent searches in the monojet channel can exclude some of the associated parameter space regions, they exhibit overlapping excesses in certain models, including a simplified scenario with pure higgsinos. We further explore an array of models that go beyond the simplified scenarios considered by the experimental collaborations, and show that the excesses persist in realistic supersymmetric models featuring a bino-like lightest supersymmetric particle with some wino admixture. On the other hand, for the Next-to-Minimal Supersymmetric Standard Model with a singlino-like lightest supersymmetric particle and higgsino-like next-to-lightest supersymmetric particles, the excess in the two-lepton channel fits rather well with the parameter space predicting the correct relic abundance through freeze out, but the monojet fit is much poorer. Interestingly, the excesses either do not overlap or do not exist at all for two non-supersymmetric models seemingly capable of producing the correct final states.

Workshop: The Gray Scott School 2025 @ Slovenia

Video overview

Overview: LAPP, as part of the ESCAPE Collaboration work programme, and in collaboration with the CC-FR Competence Centre is organizing the third Gray Scott summer school from 23 June to 4 July 2025. This summer school on High Performance Computing, in a unique format and entirely free of charge, will be dedicated to programming and optimization on Heterogeneous Architectures.

The school will cover the optimisation of computations on different types of hardware (CPU, GPU), presenting their respective characteristics, architectures and bottlenecks. It will cover generic optimisation methods applicable to all types of hardware, as well as the various libraries, technologies and languages available to achieve the best possible performance. Ideally, the peak performance of the machine.

  • Hardware: CPU, GPU
  • Languages considered: C++17, C++20, CUDA, Fortran, Rust, Python, Julia
  • Libraries considered: SYCL, Eve, Numpy, cunumerics, legate, Jax, Thrust, cuPy, pycuda and PyTorch
  • Compilers considered: G++, Clang++, nvc++, gfortran, nvfortran, dpc++. 
  • Profiling tools: Valgrind, Maqao, Perf, NSight, Malt and NumaProf

All the methods will be illustrated on simple examples, such as Hadamard products, reductions, barycentre calculations and matrix products, in order to be applied to a single problem: the simulation of a Gray Scott reaction.

This problem is simple enough to be understood quickly and complex enough for compilers to have difficulty optimising it without help. Each method will be broken down into a simple version, using default options, and one or more advanced versions, which will allow their advantages and disadvantages to be discussed and quantified.

 

 

How to attend the Gray Scott School 2025:

NCC Slovenia is offering a distance learning in Ljubljana, where one of the various satellites in Europe will take place.

The satellite will take place in hybrid format - the speakers will be present in France, and will stream via Zoom. Our lecturers will be in the room to help participants with access and implementation. At the same time, there will be a discord next to it, where the discussion will take place. 

Date and location:

  • 23.6., 24.6., 26.6 - 4.7.2025 Faculty of Mechanical Engineering, Aškerčeva c. 6, (Room II/3B)
  • 25. 6. 2025 IJS - Teslova ulica 30, 1000 Ljubljana,  

 


Bootcamp: Profiling AI Software

Overview: Together with NVIDIA and OpenACC organization, EuroCC2 will host a virtual Profiling AI Software Bootcamp on July 10, 2025.

The Profiling AI Software Bootcamp covers the process and tools needed to profile AI and machine learning applications to fully utilize high-performance systems. Attendees will learn to profile applications using NVIDIA Nsight™ Systems, a system-wide performance analysis tool; analyze and identify optimization opportunities; and improve performance of applications to scale efficiently across systems of any quantity or size of CPUs and GPUs. Additionally, this bootcamp will walk through the system topology to learn the dynamics of multi-GPU and multi-node connections and architecture.

People who complete the bootcamp are encouraged to apply to participate in the upcoming EuroCC AI Hackathon, which will be open for applications shortly.

Due to EuroCC2 regulations, generic or private email addresses cannot be accepted. Please use your official university or company email address to prove your affiliation when applying.

Application Deadline: 16th June 2025

Prerequisites: Basic experience with Python programming and PyTorch distributed training. 

Event format: This bootcamp will be hosted online in Central European Summer Time (CEST). All communication will be through Zoom, Slack and email.

Compute Resources: Attendees will be given access to a GPU cluster for the duration of the bootcamp. 


Workshop: CFD on HPC – OpenFOAM example

Description: In the three-day course, the use of the OpenFOAM software package, which is currently the most developed open-source CFD system, will be demonstrated. As the name itself suggests, it is an open-source system that any user can enhance according to their needs. Initially, the use of ParaVIEW, a graphical environment for visually reviewing and processing data from OpenFOAM, will be shown. This will be followed by an explanation of how the OpenFOAM environment, with demonstrations of simple examples. Since the foundation of CFD is the mesh, the use of three open-source mesh generators will be demonstrated: GMSH, BlockMesh, and SnappyHexMesh. Subsequently, the application of various areas within the OpenFOAM environment will be explained and demonstrated, including:

  • Fluid transport
  • Transient simulations
  • Transient data processing (animation, particles in flow)
  • Multiphase flows
  • Multi-region simulation (Multi-region)
  • Running cases in an HPC system utilizing OpenFOAM's parallel capabilities

Difficulty: Advanced

Language: According to applications

Date and time:  Day 1 from: 9:00 - 13.00 
                           Day 2 from: 9:00 - 13:00
                           Day 3 from: 9:00 - 13.00

Max. number of participants: 30

Virtual location: ZOOM

Prerequisite knowledge: The basics of the Linux operating system and the basics of fluid mechanics and Python programming.

Target audience: The training is aimed at students and staff in academia and industry who want to learn more about the OpenFOAM open source CFD platform.

Workflow: The training is on-line, in the mornings. The interactive work is done via remote access to the HPC system at ULFS. 

After the workshop you wil:

  • Be able to connect to HPC@ULFS with NoMachine client and work in HPC Linux environment
  • Understand the theoretical background of the Computational Fluid Mechanics (CFD), especially of the Finite Volume Method (FVM)
  • Be able to set up CFD mesh using different open source programs for CFD mesh design (OF – Block Mesh, GMSH)
  • Be able to setup complete OF case (mesh, pysical model, inital and boundary conditions, ...)
  • Be able to setup and run various OF cases in parallel on an HPC cluster
  • Be able to preview and post-process OF results

 

 

Organiser:

Lecturers:

Ime: Dr. Aleksander Grm
Opis: Aleksander Grm graduated with a Bachelor's degree in Physics from the Faculty of Mathematics and Physics at the University of Ljubljana. He then completed a Master's degree in Applied Mathematics at ICTP/SISA in Trieste, Italy. After the MSc, he continued his studies at the University of Kaiserslautern in Germany and obtained a PhD in Industrial Mathematics. After the PhD, he worked partly in academia and fully in industry. In 2014, he moved to the University of Ljubljana to work in basic and applied research and to teach young people mechanics and mathematics at the engineering level.
E-mail: aleksander.grm@fs.uni-lj.si 
Ime: Dr. Pavel Tomšič
Opis: He is a research assistant at ULFE and is well qualified for several HPC related topics. He is actively involved in efforts to raise competencies in the field of supercomputing, such as the Partnership for Advanced Computing in Europe (PRACE). He is also coordinator of Erasmus + project SCtrain - a strategic partnership for the transfer of knowledge from supercomputing between Slovenia, Austria, the Czech Republic and Italy. As part of the EuroHPC project for the establishment of European National Competence Centers in the field of supercomputing (EuroCC), he is the champion for Training and Skills Development for NCC Slovenia.
E-naslov: pavel.tomsic@fs.uni-lj.si

Nanobodies Workshop: Binder Recovery by In Silico and In Vitro Panning

Four-day intensive training for early-stage researchers:

  • When: 22. - 26. September 2025
  • Where: University of Nova Gorica, Gorica, Slovenia (campus Rožna Dolina: map)

This workshop is tailored for PhD students and early-career scientists eager to learn how to discover and engineer nanobodies — single-domain antibody fragments derived from camelid heavy-chain antibodies.

Participants will engage in a program consiting of lectures, hands-on laboratory sessions, and interactive computational tutorials. You will learn to identify nanobody candidates both in silico (using computational tools) and in vitro (through wet-lab panning techniques).

🔬 What You’ll Learn

  • How nanobody libraries are constructed, characterized, and screened

  • Computational workflows to model, rank, or design nanobody candidates

  • Hands-on training with phage display and wet-lab selection of antigen binders

🎯 Who Should Apply?

This workshop is open to PhD students with a basic background in biochemistry, molecular biology or related fields. It’s ideal for researchers ready to integrate nanobody discovery into their work—computationally, experimentally or both. We will select participants based on their submitted abstract and motivation letter. To encourage learning from each other, all accepted participants are expected to deliver a 10-minute short presentation in the daily PhD2PhD sessions. Successful applicants will be notified and asked to pay a €300 registration fee (see FAQ for what is included).

🧠 PhD2PhD Session

Each registered participant presents either their current PhD project as it relates to nanobody research or a method/idea they plan to adopt. Talks are strictly 10 minutes, followed by a moderated discussion with peers and lecturers. Participation in these sessions is a requirement of registration.

🤝 Collaboration & Networking

The program includes informal discussion rounds, dedicated networking events, and social activities designed to foster connections and future collaborations.

💰 Funding & Support

This workshop is supported by:

          

 


 

[DBS seminar] Angelo Rosa, "Configurational entropy of random trees"

In this talk, I will illustrate two recent results of our group concerning the statistical physics of branched polymers. In the first part, I will present a graph theoretical approach to the configurational statistics of random tree-like objects, which is based on Prüfer labelling. The method, in particular, provides: (i) direct access to the exact configurational entropy as a function of the tree composition, (ii) computable exact expressions for partition functions and important experimental observables for tree ensembles with controlled branching activity and (iii) an efficient sampling scheme for corresponding tree configurations and arbitrary static properties. Then, in the second part, I will introduce a field-theoretic framework for branched polymers with excluded volume interactions. By solving the corresponding partition function by mean-field methods, I will show that the theory is in semi-quantitative agreement with Monte-Carlo computer simulations.

9th Trilateral Meeting

The trilateral meetings are a series of one day events designed to strengthen the scientific relations in particle, astroparticle physics and cosmology between Trieste, Nova Gorica and Ljubljana.

Venue

Teslova E-classroom, 1st floor (rooms 38 and 39) on Teslova 30 in Ljubljana, near the Jožef Stefan Institute


Speakers

  • Pooja Bhattacharjee
  • Francesco D'Eramo
  • Florian Kühnel
  • Pedro Schwaller

Oragnizing committee

  • Aleksandr Azatov (SISSA)
  • Patrick Bolton (IJS)
  • Takeshi Kobayashi (SISSA)
  • Nejc Košnik (IJS)
  • Jonathan Kriewald (IJS)
  • David Marzocca (INFN)
  • Miha Nemevšek (IJS)
  • Patrick Stengel (IJS)
  • Lorenzo Ubaldi (IJS)
  • Gabrijela Zaharijas (UNG)

Past meetings


Seminar: Porting existing code to the Grace Hopper superchip

Description: In this seminar, we explore practical strategies for running legacy and modern scientific code—originally developed for the CPU—on the NVIDIA Grace Hopper superchip.

Focusing on Fortran, C, and C++ projects that compile cleanly with GCC, we will examine how to leverage NVIDIA’s HPC SDK to ensure performance portability (and gain), highlight common pitfalls, and discuss compatibility quirks between toolchains. Real-world examples will guide the discussion, making it relevant for researchers looking to transition their workloads to heterogeneous architectures.

Difficulty: Intermediate

Date & Time: 20. 5. 2025  from 14.00 to 15.00

Language: English

Prerequisite knowledge: /

Virtual location: ZOOM (only registered participants will see ZOOM link)

Organizer:

Univerza v Ljubljani v leto 2024 ...

Lecturer:

Name: Luka Leskovec
Description: Scientist and educationalist involved in theoretical physics and supercomputing
E-mail: luka.leskovec@fmf.uni-lj.si

Bootcamp: AI for Science

Overview: Together with NVIDIA and OpenACC organization, EuroCC2 will be hosting an AI for Science Bootcamp, beginning on 27th May and concluding on 28th May. 

The End-to-End AI for Science Bootcamp provides a step-by-step overview of the fundamentals of deep neural networks, walks attendees through the hands-on experience of building and improving deep learning models using a framework that uses the fundamental laws of physics to model the behaviour of complex systems, and enables attendees to visualize the outputs of the trained model.

This online bootcamp is a hands-on learning experience where you will be guided through step-by-step instructions with teaching assistants on hand to help throughout.

Appication Deadline: April 25th, 2025

Prerequisites: Mathematical background in Differential equations, Python proficiency, and familiarity with deep learning fundamentals and frameworks are required.

Event format: The AI for Science Bootcamp will be hosted online in the time zone of the hosting organization (CEST). All communication will be done through Zoom, Slack and email. 

Date and time: 

  • 27 May 2025, 9:00 AM – 12:30 PM – Day 1
  • 28 May 2025, 9:00 AM – 12:30 PM – Day 2

 

Compute Resources: Attendees will be given access to a GPU cluster for the duration of the bootcamp. 


Workshop: CFD on HPC – OpenFOAM example

Description: In the three-day course, the use of the OpenFOAM software package, which is currently the most developed open-source CFD system, will be demonstrated. As the name itself suggests, it is an open-source system that any user can enhance according to their needs. Initially, the use of ParaVIEW, a graphical environment for visually reviewing and processing data from OpenFOAM, will be shown. This will be followed by an explanation of how the OpenFOAM environment, with demonstrations of simple examples. Since the foundation of CFD is the mesh, the use of three open-source mesh generators will be demonstrated: GMSH, BlockMesh, and SnappyHexMesh. Subsequently, the application of various areas within the OpenFOAM environment will be explained and demonstrated, including:

  • Fluid transport
  • Transient simulations
  • Transient data processing (animation, particles in flow)
  • Multiphase flows
  • Multi-region simulation (Multi-region)
  • Running cases in an HPC system utilizing OpenFOAM's parallel capabilities

Difficulty: Advanced

Language: According to applications

Date and time:  16. 06. 2025 from: 9:00 - 13.00 
                            17. 06. 2025 from: 9:00 - 13:00
                            18. 06. 2025 from: 9:00 - 13.00

Max. number of participants: 30

Virtual location: ZOOM

Prerequisite knowledge: The basics of the Linux operating system and the basics of fluid mechanics and Python programming.

Target audience: The training is aimed at students and staff in academia and industry who want to learn more about the OpenFOAM open source CFD platform.

Workflow: The training is on-line, in the mornings. The interactive work is done via remote access to the HPC system at ULFS. 

After the workshop you wil:

  • Be able to connect to HPC@ULFS with NoMachine client and work in HPC Linux environment
  • Understand the theoretical background of the Computational Fluid Mechanics (CFD), especially of the Finite Volume Method (FVM)
  • Be able to set up CFD mesh using different open source programs for CFD mesh design (OF – Block Mesh, GMSH)
  • Be able to setup complete OF case (mesh, pysical model, inital and boundary conditions, ...)
  • Be able to setup and run various OF cases in parallel on an HPC cluster
  • Be able to preview and post-process OF results

 

 

Organiser:

Lecturers:

Ime: Dr. Aleksander Grm
Opis: Aleksander Grm graduated with a Bachelor's degree in Physics from the Faculty of Mathematics and Physics at the University of Ljubljana. He then completed a Master's degree in Applied Mathematics at ICTP/SISA in Trieste, Italy. After the MSc, he continued his studies at the University of Kaiserslautern in Germany and obtained a PhD in Industrial Mathematics. After the PhD, he worked partly in academia and fully in industry. In 2014, he moved to the University of Ljubljana to work in basic and applied research and to teach young people mechanics and mathematics at the engineering level.
E-mail: aleksander.grm@fs.uni-lj.si 
Ime: Dr. Pavel Tomšič
Opis: He is a research assistant at ULFE and is well qualified for several HPC related topics. He is actively involved in efforts to raise competencies in the field of supercomputing, such as the Partnership for Advanced Computing in Europe (PRACE). He is also coordinator of Erasmus + project SCtrain - a strategic partnership for the transfer of knowledge from supercomputing between Slovenia, Austria, the Czech Republic and Italy. As part of the EuroHPC project for the establishment of European National Competence Centers in the field of supercomputing (EuroCC), he is the champion for Training and Skills Development for NCC Slovenia.
E-naslov: pavel.tomsic@fs.uni-lj.si

Workshop: EuroCC2 Multi-GPU Programming Bootcamp

Scaling applications to multiple GPUs across multiple nodes requires one to be adept at not just the programming models and optimization techniques, but also at performing root-cause analysis using in-depth profiling to identify and minimize bottlenecks. In this Bootcamp, participants will learn to improve the performance of an application step-by-step, taking cues from profilers along with the ways.

This bootcamp, which will be hosted virtually for one and a half days on June 17-18, is co-organized by Academic Computer Centre Cyfronet AGH (Cyfronet), High-Performance Computing Center Stuttgart (HLRS), IT4Innovations National Supercomputing Center (IT4I), HPC Vega at IZUM (IZUM), Jülich Supercomputing Centre (JSC), Linköping University (LiU), Leibniz Supercomputing Centre (LRZ), Research Institutes of Sweden (RISE), University of Donja Gorica (UDG), Vienna Scientific Cluster (VSC), OpenACC organization, and NVIDIA for EuroCC Austria, EuroCC Czechia, EuroCC@GCS, EuroCC Montenegro, EuroCC Poland, EuroCC Slovenia and EuroCC Sweden, all National Competence Centres for High-Performance Computing.

Please ensure you meet all prerequisites/eligibility before you apply.

Important dates
19 May 2025 – Application Deadline
2 June 2025 – Notification about Acceptance
16 June 2025, 14:00 – 15:00 (CEST) – Cluster Dry Run
17 June 2025, 09:00 – 15:00 (CEST) – Day 1
18 June 2025, 09:00 – 13:30 (CEST) – Day 2

Course format
This course will be delivered as a live online course on Zoom. All communication will be done through Zoom, Slack, and email.

Hands-on labs
Attendees will be given access to an A100 GPU on one of the organizers' supercomputers.

Lecturers
Event Moderators: Marta Maj & Klemens Noga (Cyfronet & EuroCC Poland)

Instructor: Paul Graham (NVIDIA)

Teaching assistants and cluster support from the participating HPC centres.

Language
English


Basudeb Dasgupta: Probing Dark Matter with Low-Mass Black Holes

Heavy non-annihilating dark matter captured by neutron stars can trigger collapse into low-mass black holes, producing subsolar-mass mergers detectable by gravitational wave observatories. These events probe dark matter-nucleon interactions at cross-sections below the neutrino floor and dark matter masses from GeV to PeV. Existing LIGO/Virgo data already place strong bounds; future detections could reveal dark core collapse and explain anomalies like the missing pulsars near the Galactic Center. I will discuss how to distinguish low-mass black holes from neutron stars via gravitational wave signatures, and how this affects sensitivity to dark matter.

Delavnica: Uvod v ogrodje NVIDIA RAPIDS

Kratek opis: Udeleženci bodo spoznali odprtokodno ogrodje NVIDIA RAPIDS, ki vsebuje knjižnice za strojno pospešeno delo s podatki in strojno učenje. Predstavljena bo arhitektura ogrodja NVIDIA RAPIDS s poudarkom na knjižnicah cuDF, cuML in cuGraph. Udeleženci bodo na primerih preizkusili ogrodje NVIDIA RAPIDS in ga primerjali z rešitvami brez pospeševanja (knjižnici scikit-learn in NetworkX). V sklopu primerjave bodo na srednje veliki podatkovni zbirki naučili klasifikator in spoznali prednosti strojnega pospeševanja za potrebe strojnega učenja.

Podrobnejši opis: V tej delavnici bodo udeleženci spoznali odprtokodno ogrodje NVIDIA RAPIDS, ki omogoča strojno pospešeno obdelavo podatkov in izvajanje strojnega učenja ter napredne analize grafov, vse s ciljem hitrejšega izvajanja obdelav na velikih podatkovnih zbirkah. NVIDIA RAPIDS vključuje vrsto knjižnic, zasnovanih za izrabo zmogljivosti grafičnih procesorjev, ki omogočajo pospešeno analitiko in strojno učenje na obsežnih podatkih.

V sklopu delavnice bo podrobno predstavljena arhitektura ogrodja NVIDIA RAPIDS, pri čemer bo poudarek na treh ključnih knjižnicah: cuDF za hitro obdelavo podatkov, cuML za strojno učenje ter cuGraph za analizo grafov. Udeleženci bodo spoznali, kako te knjižnice omogočajo hitrejšo in učinkovitejšo obdelavo podatkov, v primerjavi s tradicionalnimi rešitvami, ki ne izkoriščajo pospeševanja, kot so scikit-learn za strojno učenje in NetworkX za analizo grafov.

Delavnica bo obsegala praktične primere, kjer bodo udeleženci primerjali izvajanje nalog strojnega učenja in analize grafov na srednje veliki podatkovni zbirki, pri čemer bodo uporabili NVIDIA RAPIDS in primerjali rezultate z rešitvami, ki temeljijo na CPE. Udeleženci se bodo naučili, kako hitro naučiti klasifikatorje na GPE ter raziskali prednosti strojnega pospeševanja pri obdelavi in analizi podatkov v primerjavi s tradicionalnimi pristopi. To bo udeležencem omogočilo boljše razumevanje prednosti uporabe ogrodja NVIDIA RAPIDS v realnih projektih strojnega učenja in podatkovne znanosti.

Zahtevnost: Napredna

Jezik: Slovenski

Termin: 22. 1. 2024 od 9.00 - 13.00

Omejitev števila udeležencev: 30

Virtualna lokacija: MS TEAMS

Priporočeno predznanje: Osnovno poznavanje programskega jezika Python, osnovno poznavanje knjižnic scikit-learn in NetworkX

Ciljna publika: Raziskovalci, inženirji, študenti, podatkovni znanstveniki, podatkovni analitiki 

Potek izobraževanja: Izobraževanje poteka na daljavo v okolju MS Teams. Udeleženci sodelujejo s pomočjo zvezkov Jupyter, ki jih odprejo na platformi Google Colab.

Na izobraževanju pridobljena znanja:

  • Razumevanje arhitekture ogrodja NVIDIA RAPIDS
  • Uporaba osnovnih in naprednih funkcij knjižnic cuDF, cuML in cuGraph
  • Obdelava podatkov na grafični kartici (cuDF)
  • Strojno pospeševanje algoritmov strojnega učenja (cuML in scikit-learn)
  • Strojno pospeševanje algoritmov za delo z grafi (cuGraph in NetworkX)
  • Uporaba ogrodja NVIDIA RAPIDS v praksi (priporočanje filmov in vektorsko iskanje)

 

Organizator:

Predavatelji:

Ime:Mladen Borovič
Opis:Mladen Borovič je asistent na Fakulteti za elektrotehniko, računalništvo in informatiko Univerze v Mariboru (UM FERI). Njegova raziskovalna področja so aplikacije umetne inteligence, priporočilni sistemi in iskalnike, sistemi za detekcijo podobnih vsebin, obdelava naravnega jezika in visokozmogljivo računalništvo.
E-mail:mladen.borovic@um.si 

 


AI@JSI Seminar - Josip Šarić - Label-efficient panoptic segmentation

Title: Label-efficient panoptic segmentation

Abstract: Panoptic segmentation provides a comprehensive understanding of visual scenes by assigning each pixel a semantic class label and, for objects, an instance ID. While highly effective, traditional methods rely heavily on large-scale annotated datasets, posing significant challenges for scalability and adaptability. Additionally, the process of annotating images with panoptic labels is both labor-intensive and time-consuming, highlighting the importance of label-efficient approaches. In this talk, I will present an overview of various label-efficient methods, focusing on my recent work in unsupervised domain adaptation and semi-supervised learning. I will also discuss the emerging field of open-vocabulary panoptic segmentation, which extends recognition capabilities to categories beyond the training taxonomy.

Lecturer: Josip Šarić, PhD

Short info on the lecturer: Josip Šarić is a postdoctoral researcher at the Faculty of Computer and Information Science, University of Ljubljana, supported by the SMASH postdoctoral program. Prior to this, he completed a PhD and two-year postdoc at the Faculty of Electrical Engineering and Computing, University of Zagreb. His research interests focus on computer vision and deep learning, with a particular emphasis on topics such as panoptic segmentation, open-vocabulary recognition, label-efficient learning, and related areas.

Information on AI@JSI seminars and previous recordings are available here: https://kt.ijs.si/aijsi-seminar/.

Delavnica: Visoko zmogljivi Python

Opis: Raziskovalci se pogosto soočajo z zahtevnimi računskimi izzivi, kot so analiza obsežnih podatkov, fizikalne simulacije, računska kemija, biologija, napovedovanje vremena, simulacije dinamike tekočin in podobno. Za reševanje teh izzivov se pogosto zatekajo k programskemu jeziku Python, ki ponuja bogato paleto knjižnic in orodij. Njegova slabost pa je lahko počasnost izvajanja, če ne uporabimo primernih pristopov k programiranju.

Na delavnici se bomo osredotočili na orodja in knjižnice v Pythonovem ekosistemu, s katerimi lahko izkoristimo računsko moč sodobnih večjedrnih procesorjev ter grafičnih pospeševalnikov v superračunalniškem okolju. Obravnavali bomo različne probleme, od operacij nad matrikami do učenja globokih nevronskih mrež, in poiskali ustrezne rešitve k pohitritvi izvajanja. 

Zahtevnost: Napredna

Jezik: Slovenski

Termin: 06. 02. 2025 od 10.00 - 16.00

Omejitev števila udeležencev: 30

Lokacija:

  • Fizična (Univerza v Ljubljani, Fakulteta za računalništvo in informatiko, Večna pot 113, Ljubljana, Predavalnica P19)
  • ZOOM 

 

Ciljna publika: raziskovalci, inženirji, študenti, vsi ki potrebujejo več računskih virov pri svojem delu

Zaželeno predhodno znanje:

  • opravljena delavnica Osnove superračunalništva,
  • razumevanje zgradbe računalniške gruče,
  •  delo preko odjemalca SSH (ukazna vrstica, prenašanje datotek),
  • osnovno poznavanje vmesne programske opreme Slurm,
  • osnovno znanje operacijskega sistema Linux in lupine Bash,
  • osnovno poznavanje programskega jezika Python.

 

Na izobraževanju pridobljena znanja:

  • Uporaba programskega jezika Python v superračunalniškem okolju
  • Uporaba knjižnic za vzporedno računanje v (RAPIDS, numba)
  • Uporaba knjižnice za porazdeljeno računanje DASK
  • Globoko učenje na superračunalniški gruči s knjižnico PyTorch

 

Organizator:

 

FRI logo

 

Predavatelji:

Ime: Davor Sluga
Opis: https://fri.uni-lj.si/sl/o-fakulteti/osebje/davor-sluga 
E-mail: davor.sluga@fri.uni-lj.si
Ime: Ratko Pilipović
Opis: https://www.fri.uni-lj.si/sl/o-fakulteti/osebje/ratko-pilipovic
E-mail: ratko.pilipovic@fri.uni-lj.si

 


International Masterclasses 2025

»International Masterclasses« iz fizike osnovnih delcev nudijo gimnazijcem enkratno priložnost, da se sami spoznajo s svetom kvarkov in leptonov, tako da izvedejo meritve na podatkih, zajetih pri eksperimentih v CERNu in drugih raziskovalnih centrih po svetu, da se srečajo z raziskovalci in se povežejo s svojimi vrstniki – dijaki iz drugih držav - in z njimi pregledajo rezultate ter izmenjajo mnenja. 

Dijaki bodo na enodnevnem dogodku s predstavitvami in delavnico, kjer bodo uporabili podatke, zajete z detektorjema ATLAS in  Belle II, spoznavali osnovne delce in sile, ki delujejo med njimi, ter uporabo tovrstnih delcev v sodobnih metodah zdravljenja s hadronsko radioterapijo. 

Celodnevni dogodek bo potekal na Institutu Jožef Stefan v Ljubljani. Dopoldne bomo raziskovalci z Instituta Jožef Stefan v Ljubljani, Fakultete za matematiko in fiziko Univerze v Ljubljani in Fakultete za kemijo in kemijsko tehnologijo Univerze v Mariboru predstavili fiziko osnovnih delcev, medicinsko fiziko in detektorje, ki jih uporabljamo pri naših raziskavah.

Na virtualnem sprehodu si bomo ogledali notranjost detektorja Belle II, vmes pa bo obilo priložnosti za pogovor z raziskovalci o tem, kako raziskujejo in kako preživljajo svoj čas v CERNu in na Japonskem. Izvedeli bomo lahko tudi nekaj več o tem, kakšne so povezave med raziskavami zgradbe vesolja in uporabo odkritij v medicinske namene. Ob koncu jutranjega dela delavnice bodo udeleženci prisluhnili še kratki predstavitvi enega od naših poslovnih partnerjev.

Kosilo za udeležence delavnice je predvideno v menzi Instituta Jožef Stefan. Za plačilo kosila (okoli 7 EUR) poskrbijo udeleženci sami. 

Po kosilu se bomo na popoldanski delavnici lotili iskanja neznanih kratkoživih delcev z uporabo podatkov, ki so bili zajeti z detektorjema ATLAS in  Belle II. Ogledali si bomo simulacijo radioterapije ter izbrali obsevalni načrt, ki bo učinkovito zavrl rast tumorja, pri tem pa obvaroval občutljive organe in obolelo tkivo. Po odkritjih se bomo skupaj z dijaki iz drugih raziskovalnih centrov po svetu povezali s kontrolno sobo eksperimentov v video konferenci.

Vabimo te, da se udeležiš poučnega in zabavnega dogodka. Dogodek bomo izpeljali v živo na Institutu Jožef Stefan.

Za udeležbo se registriraj preko zavihka na levi.

Mineral Detection of Neutrinos and Dark Matter (MDvDM) 2025

Mineral detectors have been proposed for a wide variety of applications, including searching for dark matter, measuring various fluxes of astrophysical neutrinos over gigayear timescales, monitoring nuclear reactors, and nuclear disarmament protocols; both as paleo-detectors using natural minerals that could have recorded the traces of nuclear recoils for timescales as long as a billion years and as detectors recording nuclear recoil events on laboratory timescales using natural or artificial minerals.

At this workshop, we will discuss the vast physics potential of mineral detectors, the progress in experimental studies, and the numerous challenges lying ahead on the path towards mineral detection. These include a better understanding of the formation and annealing of recoil defects in crystals; identifying the best classes of minerals and, for paleo-detectors, understanding their geology; modeling and control of the relevant backgrounds; developing, combining, and scaling up imaging and data analysis techniques; and many others.

List of Cofirmed Speakers

Alexey Elykov KIT Noriko Hasebe Kanazawa U.
Atsuhiro Umemoto KEK Patrick Huber Virginia Tech
Ayuki Kamada Warsaw U. Patrick Stengel Jozef Stefan Institute
Christopher Kelso U. of North Florida Samuel Wong Stanford U.
Claudio Galelli INFN Milan Shigenobu Hirose JAMSETC
Daniel Ang U. of Maryland Shunsaku Horiuchi Science Tokyo
Emilie LaVoie-Ingram U. of Michigan Takahiro Yokoyama JAMSTEC
Igor Jovanovic U. of Michigan Takenori Kato Nagoya U.
Joseph Bramante Queen's U. Tatsuhiro Naka Toho U.
Kai Sun U. of Michigan Vsevolod Ivanov Virginia Tech
Kohta Murase Penn State U. Wen Yin Tokyo Metropolitan U.
Natsue Abe JAMSTEC William McDonough Tohoku U.
Noriaki Sakuri JAMSTEC    

 

During the last years, the MDvDM community has grown rapidly and gained attention. Small-scale experimental efforts focused on establishing various microscopic readout techniques are underway at institutions in Asia, Europe and North America. The third MDvDM workshop will bring together theoretical and experimental physicists, material scientists, and geologists to discuss the state of the art of the emerging field of Mineral Detection of Neutrinos and Dark Matter.

Previous MDvDM workshops:

  1. https://agenda.infn.it/event/32181/
  2. https://indico.phys.vt.edu/event/62/

Dan odprte znanosti 2024, EOSC tripartitni dogodek in Dan občanske znanosti

Dnevi odprte znanosti 2024 in EOSC tripartitni dogodek  – Odpiramo vrata prihodnosti znanosti z nacionalnim tripartitnim dogodkom EOSC!

Na Dnevnih odprte znanosti in Nacionalnem tripartitnem dogodku bomo gostili predstavnike Združenja EOSC, Evropske komisije, držav članic EU ter ključne domače in mednarodne strokovnjake s področja odprte znanosti, infrastrukture in vrednotenja znanosti. Potekali bodo od 3. do 5. decembra 2024 v  hotelu Four Points by Sheraton Ljubljana (Mons) v okviru Arnesove konference "Mreža znanja".

Prav tako bo v sklopu konference potekal tudi Dan občanske znanosti 2024. Poslanstvo odprte znanosti je odkrivanje novih znanstvenih spoznanj, hkrati pa tudi deljenje tega znanja med različnimi deležniki.

Na dogodke, ki bodo organizirani v sklopu Arnesove letne konference Mreža znanja, se je potrebno prijaviti

Spremljali boste lahko tudi prek video prenosov v živo.

 

 

 

Dnevi SLING

Vabimo vas na »Dneve slovenskega superračunalniškega omrežja« oz. »Dneve SLING« , ki bodo potekali v hotelu Four Points by Sheraton Ljubljana Mons

Spoznajte Slovensko superračunalniško omrežje (SLING) ter se seznanite z aktualnostmi s področja superračunalništva v Sloveniji in širše v Evropi.

Pester program vključuje predstavitve delovanja Nacionalnega kompetenčnega centra za superračunalništvo in centrov odličnosti na področju superračunalništva. Prav tako bomo predstavili primere učinkovite rabe zmogljivih superračunalnikov v industriji in akademski svetu ter razložili možnosti dostopa do teh sistemov za različne uporabnike.

Na dogodek, ki bo potekal v okviru projekta EuroCC 2 in Arnesove konference Mreža znanja, se je potrebno prijaviti

 

 Udeležba na dogodku in delavnicah je brezplačna. 

Poleg tega boste lahko "Dan slovenskega superračunalniškega omrežja" spremljali tudi prek prenosa v živo. 

Pridružite se nam in poglobite svoje razumevanje sveta superračunalništva.


Projekt EuroCC 2 financira Evropsko Skupno podjetje za evropsko visokozmogljivo računalništvo (JU) v okviru sporazuma o dodelitvi sredstev št. 101101903. JU podpirajo program Digitalna Evropa, Nemčija, Bolgarija, Avstrija, Hrvaška, Ciper, Češka republika, Danska, Estonija, Finska, Grčija, Madžarska, Irska, Italija, Litva, Latvija, Poljska, Portugalska, Romunija, Slovenija, Španija, Švedska, Francija, Nizozemska, Belgija, Luksemburg, Slovaška, Norveška, Turčija, Republika Severna Makedonija, Islandija, Črna gora in Srbija. Delovanje Nacionalnega kompetenčnega centra SLING sofinancira Ministrstvo za visoko šolstvo, znanost in inovacije.

❌