Reading view

There are new articles available, click to refresh the page.

A not-so-random walk through random walks

By: VM

Though I’ve been interested of late with the idea of random walks, I was introduced to the concept when, more than two decades ago, I stumbled across Conway’s Game of Life, the cellular automaton built by John Conway in 1970. A cellular automaton is a grid of cells in which each cell has a value depending on the values of its neighbours. The automaton simulates the evolution of the grid as the cells’ values change dynamically.

Langton’s ant was a popular instance of the simulator and one of my favourites, too. One 2001 conference paper described it as “a simple … system with a surprisingly complex behaviour.” Here, a (virtual) ant starts off at a random cell on the grid and moves randomly into one of the four neighbouring squares (diagonal squares aren’t accessible). There are three rules:

(i) A cell can be either black or white in colour;

(ii) If the square is white when the ant moves into it, the colour is flipped, and the ant turns 90º clockwise and moves forward;

(iii) If the square is black, the colour is flipped, and the ant turns 90º counter-clockwise and moves forward.

As the ant moves across the grid in this way, the first hundred or so steps produce a symmetric pattern before chaos ensues. For the next 9,900 or so steps, an image devoid of any patterns comes into view. But after around 10,000 steps, there’s magic: the ant suddenly enters into a repetitive 104-step pattern that it continues until the end of time. You can run your own simulation and check.

The path of a Langton’s ant. The repetitive pattern after ~10,000 steps is the ‘highway’ growing at the bottom. The location of the ant is shown in red. Credit: Krwarobrody and Ferkel/Wikimedia Commons

The march of the Langton’s ant before the repetitive portion has been described as a pseudorandom walk — a walk whose pattern appears random but whose next step is not quite random (because of the rules). In a truly random walk, the length of each step is fixed and the direction of each step is chosen at random from a fixed number of options.

If it sounds simple, it is, but you might be forgiven for thinking it’s only a mathematical flight of fancy. Random walks have applications in numerous areas, including econometrics, finance, biology, chemistry, and quantum physics.

The trajectory of a random walk after 25,000 steps. Credit: László Németh/Wikimedia Commons

Specific variants of the random walk behave in ways that closely match the properties of some complex system evolving in time. For example, in a Gaussian random walk, the direction of each step is random and the length of each step is sampled randomly from a Gaussian distribution (the classic example of a bell curve). Experts use the evolution of this walk to evaluate the risk exposure of investment portfolios.

The Lévy flight is a random walk with a small change: instead of the step length being determined by a random pick from the Gaussian distribution, it comes from any distribution with a heavy tail. One common example is the gamma distribution. Each such distribution can be tweaked with two parameters called κ (kappa) and θ (theta) to produce different plots on a graph, all with the same general properties. In the examples shown below, focus on the orange line (κ = 2, θ = 2): it shows a gamma distribution with a heavy tail.

Various gamma distributions for different values of κ and θ. Credit: MarkSweep and Cburnett/Wikimedia Commons, CC BY-SA 3.0

Put another way, the distribution has some large values but mostly small values. A Lévy flight is a random walk where the step length is sampled randomly from this distribution, and as a result has a few large steps and many small steps. Research has shown that the foraging path of animals looking for food that is scarce can be modelled as a Lévy flight: the large steps correspond to the long distances towards food sources that are located far apart and the short steps to finding food spread in a small area at each source.

A Lévy flight simulated for 1,000 steps. Credit: PAR/Wikimedia Commons

Perhaps the most famous ‘example’ of a random walk is Brownian motion; it isn’t a perfect example however. Brownian motion can describe, say, the path of a single atom over time in a gas of billions of atoms by using a Lévy process. Whereas a random walk proceeds in discrete steps, a Lévy process is continuous; they are in other respects the same. The motion itself refers to the atom’s journey in some time period, frequently bumping into other atoms (depending on the gas’s density) and shifting its path in random ways.

The yellow circle depicts the motion of a larger particle in a container filled with smaller particles moving in random directions at different speeds. Credit: Francisco Esquembre, Fu-Kwun and lookang/Wikimedia Commons, CC BY-SA 3.0

Brownian motion in particular uses a type of Lévy process called the Wiener process, where the path evolves according to the following rules:

(i) Each increment of the process is independent of other (non-overlapping) increments;

(ii) How much the process changes over a period of time depends only on the duration of the period;

(iii) Increments in the process are randomly sampled from a Gaussian distribution;

(iv) The process has a statistical mean equal to zero;

(v) The process’s covariance between any two time points is equal to the lower variance at those two points (variance denotes how quickly the value of a variable is spreading out over time).

The path of the atom in the gas follows a Wiener process and is thus Brownian motion. The Wiener process has a wealth of applications across both the pure and the applied sciences. Just to name one: say there is a small particle — e.g. an ion — trapped in a cell. It can’t escape the cell except through a small opening. The Wiener process, which models the Brownian motion of the ion through the cell, can be used to estimate the average amount of time the ion will need to reach the opening and escape.

Like random walks, Wiener processes can also be tweaked to produce models for different conditions. One example is the Brownian bridge, which arises when a Wiener process is limited to appear at the start of an interval and disappear at the end, with the start and end points fixed. A different, more visual way to put this is in terms of a graph with two y-axes and one x-axis. Say the point 0 is the start of the interval on the left y-axis and 1 is the end of the interval on the right y-axis. A Wiener process in the interval [0, 1] will be a ‘bridge’ that connects 0 and 1 in a path that follows Brownian motion.

A Brownian bridge pinned at the two endpoints of an interval. Credit: Zemyla/Wikimedia Commons, CC BY-SA 3.0

By analogy, a random bridge in the interval [0, 1] will be a random walk based on the Gaussian distribution between 0 and 1; a gamma random bridge in the interval [0, 1] will be a random walk based on the gamma distribution between 0 and 1; and so on. (This said, a Wiener process and a random walk are distinct: a Wiener process will play out the same way if the underlying grid is rotated by an arbitrary angle but a random walk won’t.)

It’s a wonder of mathematics that it can discern recurring behaviours in such highly noisy systems and with its finite tools distil from them glimpses into their future. According to a 2020 preprint paper on arXiv, “Various random-walk-related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding.”

If some basic conditions are met, there are random walks out in the universe as well. In 2004, researchers estimated the Brownian velocity of the black hole at the Milky Way’s centre to be less than 1 km/s.

For a more mathematical example, in a ‘conventional’ random walk, after N steps the walker’s distance from the origin will be comparable to the square root of N. Further, it takes on average S2 steps to travel a distance of S from the origin. For a long time, researchers believed this so-called S → S2 scaling law could model almost any process in which a physical entity was moving from one location to another. The law captured the notion of how much a given distribution would spread out over time.

One of the earliest deviations from this law was fractals, where there is an S → Sβ law but such that β is always greater than 2, implying a greater amount of spread relative to the step length vis-à-vis random walks. (Factoid: a random walk on a fractal also gives rise to a fractal.)

A Sierpinski triangle fractal. Credit: Beojan Stanislaus/Wikimedia Commons, CC BY-SA 3.0

For yet another example, random walks have a famously deep connection to resistor networks: electric circuits where a bunch of resistors are connected in some configuration, plus a power source and a grounding. Researchers have found that the effective voltage between any two points in the circuit is proportional to the time a random-walker would take to travel between those two points for the first time.

A schematic diagram of an electrical circuit where the challenge is to determine the resistance to the flow of an electric current at each of the in-between nodes. Source: math.ucla.edu

The resistor model speaks to a beautiful thing random walks bring to light: the influence an underlying structure exerts on a stochastic process — one governed entirely by chance — playing out on that structure, its inherent geometry imposing unexpected limits on the randomness and keeping it from wheeling away into chaos. At each step the random walk makes an unpredictable choice but the big picture in which these steps are individual strokes is a picture of predictability, to some degree at least.

Flip this conclusion on its head and an even more captivating notion emerges: that though two random walks may resemble each other in their statistical properties, they can still be very different journeys.

PSA about Business Today

PSA about Business Today

If you get your space news from the website businesstoday.in, this post is for you. Business Today has published several articles over the last few weeks about the Starliner saga with misleading headlines and claims blown far out of proportion. I’d been putting off writing about them but this morning, I spotted the following piece:

PSA about Business Today

Business Today has produced all these misleading articles in this format, resembling Instagram reels. This is more troubling because we know tidbits like this are more consumable as well as are likely to go viral by virtue of their uncomplicated content and simplistic message. Business Today has also been focusing its articles on the saga on Sunita Williams alone, as if the other astronauts don’t exist. This choice is obviously of a piece with Williams’s Indian heritage and Business Today’s intention to maximise traffic to its pages by publishing sensational claims about her experience in space. As I wrote before:

… in the eyes of those penning articles and headlines, “Indian-American” she is. They’re using this language to get people interested in these articles, and if they succeed, they’re effectively selling the idea that it’s not possible for Indians to care about the accomplishments of non-Indians, that only Indians’, and by extension India’s, accomplishments matter. … Calling Williams “Indian-American” is to retrench her patriarchal identity as being part of her primary identity — just as referring to her as “Indian origin” is to evoke her genetic identity…

But something more important than the cynical India connection is at work here: in these pieces, Business Today has been toasting it. This my term for a shady media practice reminiscent of a scene in an episode of the TV show Mad Men, where Don Draper suggests Lucky Strike should advertise its cigarettes as being “toasted”. When someone objects that all cigarettes are toasted, Draper says they may well be, but by saying publicly that its cigarettes are toasted, Lucky Strike will set itself out without doing anything new, without lying, without breaking any rules. It’s just a bit of psychological manipulation.

Similarly, Business Today has been writing about Williams as if she’s the only astronaut facing an extended stay in space (and suggesting in more subtle ways that this fate hasn’t befallen anyone before — whereas it has dozens of times), that NASA statements concern only her health and not the health of the other astronauts she’s with, and that what we’re learning about her difficulties in space constitute new information.

None of this is false but it’s not true either. It’s toasted. Consider the first claim: “NASA has revealed that Williams is facing a critical health issue”:

* “NASA has revealed” — there’s nothing to reveal here. We already know microgravity affects various biochemical processes in the body, including the accelerated destruction of red blood cells.

* “Williams is facing” — No. Everyone in microgravity faces this. That’s why astronauts need to be very fit people, so their bodies can weather unanticipated changes for longer without suffering critical damage.

* “critical health issue” — Err, no. See above. Also, perhaps in a bid to emphasise this (faux) criticality, Business Today’s headline begins “3 million per second” and ends calling the number “disturbing”. You read it, this alarmingly big number is in your face, and you’re asking to believe it’s “disturbing”. But it’s not really a big number in context and certainly not worth any disturbance.

For another example, consider: “Given Williams’ extended mission duration, this accelerated red blood cell destruction poses a heightened risk, potentially leading to severe health issues”. Notice how Business Today doesn’t include three important details: how much of an extension amounts to a ‘bad’ level of extension, what the odds are of Williams (or her fellow Starliner test pilot Barry Wilmore) developing “health issues”, and whether these consequences are reversible. Including these details would deflate Business Today’s ‘story’, of course.

If Business Today is your, a friend’s and/or a relative’s source of space news, please ask them to switch to any of the following instead for space news coverage and commentary that’s interesting without insulting your intelligence:

* SpaceNews

* Jeff Foust

* Marcia Smith

* Aviation Week

* Victoria Samson

* Jatan Mehta

* The Hindu Science

A spaceflight narrative unstuck

“First, a clarification: Unlike in Gravity, the 2013 film about two astronauts left adrift after space debris damages their shuttle, Sunita Williams and Butch Wilmore are not stuck in space.”
A spaceflight narrative unstuck

This is the first line of an Indian Express editorial today, and frankly, it’s enough said. The idea that Williams and Wilmore are “stuck” or “stranded” in space just won’t die down because reports in the media — from The Guardian to New Scientist, from Mint to Business Today — repeatedly prop it up.

Why are they not “stuck”?

First: because “stuck” implies Boeing/NASA are denying them an opportunity to return as well as that the astronauts wish to return, yet neither of which is true. What was to be a shorter visit has become a longer sojourn.

This leads to the second answer: Williams and Wilmore are spaceflight veterans who were picked specifically to deal with unexpected outcomes, like what’s going on right now. If amateurs or space tourists had been picked for the flight and their stay at the ISS had been extended in an unplanned way, then the question of their wanting to return would arise. But even then we’d have to check if they’re okay with their longer stay instead of jumping to conclusions. If we didn’t, we’d be trivialising their intention and willingness to brave their conditions as a form of public service to their country and its needs. We should think about extending the same courtesy to Williams and Wilmore.

And this brings us to the third answer: The history of spaceflight — human or robotic — is the history of people trying to expect the unexpected and to survive the unexpectable. That’s why we have test flights and then we have redundancies. For example, after the Columbia disaster in 2003, part of NASA’s response was a new protocol: that astronauts flying in faulty space capsules could dock at the ISS until the capsule was repaired or a space agency could launch a new capsule to bring them back. So Williams and Wilmore aren’t “stuck” there: they’re practically following protocol.

For its upcoming Gaganyaan mission, ISRO has planned multiple test flights leading up the human version. It’s possible this flight or subsequent ones could throw up a problem, causing the astronauts within to take shelter at the ISS. Would we accuse ISRO of keeping them “stuck” there or would we laud the astronauts’ commitment to the mission and support ISRO’s efforts to retrieve them safely?

Fourth: “stuck” or “stranded” implies a crisis, an outcome that no party involved in the mission planned for. It creates the impression human spaceflight (in this particular mission) is riskier than it is actually and produces false signals about the competencies of the people who planned the mission. It also erects unreasonable expectations about the sort of outcomes test flights can and can’t have.

In fact, the very reason the world has the ISS and NASA (and other agencies capable of human spaceflight) has its protocol means this particular outcome — of the crew capsule malfunctioning during a flight — needn’t be a crisis. Let’s respect that.

Finally: “Stuck” is an innocuous term, you say, something that doesn’t have to mean all that you’re making it out to be. Everyone knows the astronauts are going to return. Let it go.

Spaceflight is an exercise in control — about achieving it to the extent possible without also getting in the way of a mission and in the way of the people executing it. I don’t see why this control has to slip in the language around spaceflight.

The pitfalls of Somanath calling Aditya L1 a “protector”

By: VM

In a WhatsApp group of which I’m a part, there’s a heated discussion going on around an article published by NDTV on June 10, entitled ‘Sun’s Fury May Fry Satellites, But India Has A Watchful Space Protector’. The article was published after the Indian Space Research Organisation (ISRO) published images of the Sun the Aditya L1 spacecraft (including its coronagraph) captured during the May solar storm. The article also features quotes by ISRO chairman S. Somanath — and some of them in particular prompted the discussion. For example, he says:

“Aditya L1 captured when the Sun got angry this May. If it gets furious in the near future, as scientists suggest, India’s 24x7X365 days’ eye on the Sun is going to provide a forewarning. After all, we have to protect the 50-plus Indian satellites in space that have cost the country an estimated more than ₹ 50,000 crore. Aditya L1 is a celestial protector for our space assets.”

A space scientist on the group pointed out that any solar event that could fry satellites in Earth orbit would also fry Aditya L1, which is stationed at the first Earth-Sun Lagrange point (1.5 million km from Earth in the direction of the Sun), so it doesn’t make sense to describe this spacecraft as a “protector” of India’s “space assets”. Instead, the scientist said, we’re better off describing Aditya L1 as a science mission, which is what it’d been billed as.

Another space scientist in the same group contended that the coronagraph onboard Aditya L1, plus its other instruments, still give the spacecraft a not insignificant early-warning ability, using which ISRO could consider protective measures. He also said not all solar storms are likely to fry all satellites around Earth, only the very powerful ones; likewise, not all satellites around Earth are equally engineered to withstand solar radiation that is more intense than usual, to varying extents. With these variables in mind, he added, Aditya L1 — which is protected to a greater degree — could give ISRO folks enough head start to manoeuvre ‘weaker’ satellites out of harm’s way or prevent catastrophic failures. By virtue of being ISRO’s eyes on the Sun, then, he suggested Aditya L1 was a scientific mission that could also perform some, but not all, of the functions expected of a full-blown early warning system.

(For such a system vis-a-vis solar weather, he said the fourth or the fifth Earth-Sun Lagrange points would have been better stations.)

I’m putting this down here as a public service message. Characterising a scientific mission — which is driven by scientists’ questions, rather than ISRO’s perception of threats or as part of any overarching strategy of the Indian government — as something else is not harmless because it downplays the fact that we have open questions and that we need to spend time and money answering them. It also creates a false narrative about the mission’s purpose that the people who have spent years designing and building the instruments onboard Aditya L1 don’t deserve, and a false impression of how much room the Indian space programme currently has to launch and operate spacecraft that are dedicated to providing early warnings of bad solar weather.

To be fair, the NDTV article says in a few places that Aditya L1 is a scientific mission, as does astrophysicist Somak Raychaudhury in the last paragraph. It’s just not clear why Somanath characterised it as a “protector” and as a “space-based insurance policy”. NDTV also erred by putting “protector” in the headline (based on my experiences at The Wire and The Hindu, most readers of online articles read and share nothing more than the headline). That it was the ISRO chairman who said these things is more harmful: as the person heading India’s nodal space research body, he has a protagonist’s role in making room in the public imagination for the importance and wonders of scientific missions.

The BHU Covaxin study and ICMR bait

By: VM

Earlier this month, a study by a team at Banaras Hindu University (BHU) in Varanasi concluded that fully 1% of Covaxin recipients may suffer severe adverse events. One percent is a large number because the multiplier (x in 1/100 * x) is very large — several million people. The study first hit the headlines for claiming it had the support of the Indian Council of Medical Research (ICMR) and reporting that both Bharat Biotech and the ICMR are yet to publish long-term safety data for Covaxin. The latter is probably moot now, with the COVID-19 pandemic well behind us, but it’s the principle that matters. Let it go this time and who knows what else we’ll be prepared to let go.

But more importantly, as The Hindu reported on May 25, the BHU study is too flawed to claim Covaxin is harmful, or claim anything for that matter. Here’s why (excerpt):

Though the researchers acknowledge all the limitations of the study, which is published in the journal Drug Safety, many of the limitations are so critical that they defeat the very purpose of the study. “Ideally, this paper should have been rejected at the peer-review stage. Simply mentioning the limitations, some of them critical to arrive at any useful conclusion, defeats the whole purpose of undertaking the study,” Dr. Vipin M. Vashishtha, director and pediatrician, Mangla Hospital and Research Center, Bijnor, says in an email to The Hindu. Dr. Gautam Menon, Dean (Research) & Professor, Departments of Physics and Biology, Ashoka University shares the same view. Given the limitations of the study one can “certainly say that the study can’t be used to draw the conclusions it does,” Dr. Menon says in an email.

Just because you’ve admitted your study has limitations doesn’t absolve you of the responsibility to interpret your research data with integrity. In fact, the journal needs to speak up here: why did Drug Safety publish the study manuscript? Too often when news of a controversial or bad study is published, the journal that published it stays out of the limelight. While the proximal cause is likely that journalists don’t think to ask journal editors and/or publishers tough questions about their publishing process, there is also a cultural problem here: when shit hits the fan, only the study’s authors are pulled up, but when things are rosy, the journals are out to take credit for the quality of the papers they publish. In either case, we must ask what they actually bring to the table other than capitalising on other scientists’ tendency to judge papers based on the journals they’re published in instead of their contents.

Of course, it’s also possible to argue that unlike, say, journalistic material, research papers aren’t required to be in the public interest at the time of publication. Yet the BHU paper threatens to undermine public confidence in observational studies, and that can’t be in anyone’s interest. Even at the outset, experts and many health journalists knew observational studies don’t carry the same weight as randomised controlled trials as well as that such studies still serve a legitimate purpose, just not the one to which its conclusions were pressed in the BHU study.

After the paper’s contents hit the headlines, the ICMR shot off a latter to the BHU research team saying it hasn’t “provided any financial or technical support” to the study and that the study is “poorly designed”. Curiously, the BHU team’s repartee to the ICMR’s makes repeated reference to Vivek Agnihotri’s film The Vaccine War. In the same point in which two of these references appear (no. 2), the team writes: “While a study with a control group would certainly be of higher quality, this immediately points to the fact that it is researchers from ICMR who have access to the data with the control group, i.e. the original phase-3 trials of Covaxin – as well publicized in ‘The Vaccine War’ movie. ICMR thus owes it to the people of India, that it publishes the long-term follow-up of phase-3 trials.”

I’m not clear why the team saw fit to appeal to statements made in this of all films. As I’ve written earlier, The Vaccine War — which I haven’t watched but which directly references journalistic work by The Wire during and of the pandemic — is most likely a mix of truths and fictionalisation (and not in the clever, good-faith ways in which screenwriters adopt textual biographies for the big screen), with the fiction designed to serve the BJP’s nationalist political narratives. So when the letter says in its point no. 5 that the ICMR should apologise to a female member of the BHU team for allegedly “spreading a falsehood” about her and offers The Vaccine War as a counterexample (“While ‘The Vaccine War’ movie is celebrating women scientists…”), I can’t but retch.

Together with another odd line in the latter — that the “ICMR owes it to the people of India” — the appeals read less like a debate between scientists on the merits and the demerits of the study and more like they’re trying to bait the ICMR into doing better. I’m not denying the ICMR started it, as a child might say, but saying that this shouldn’t have prevented the BHU team from keeping it dignified. For example, the BHU letter reads: “It is to be noted that interim results of the phase-3 trial, also cited by Dr. Priya Abraham in ‘The Vaccine War’ movie, had a mere 56 days of safety follow-up, much shorter than the one-year follow-up in the IMS-BHU study.” Surely the 56-day period finds mention in a more respectable and reliable medium than a film that confuses you about what’s real and what’s not?

In all, the BHU study seems to have been designed to draw attention to gaps in the safety data for Covaxin — but by adopting such a provocative route, all that took centerstage was its spat with the ICMR plus its own flaws.

The billionaire’s solution to climate change

By: VM

On May 3, Bloomberg published a profile of Salesforce CEO Marc Benioff’s 1t.org project to plant or conserve one trillion trees around the world in order to sequester 200 gigatonnes of carbon every year. The idea reportedly came to Benioff from Thomas Crowther’s infamous September 2015 paper in Nature that claimed restoring trees was the world’s best way to ‘solve’ climate change.

Following pointed criticism of the paper’s attitude and conclusions, they were revised to a significant extent in October 2019 to tamper predictions about the carbon sequestration potential of the world’s trees and to withdraw its assertion that no other solution could work better than planting and/or restoring trees.

According to Bloomberg’s profile, Benioff’s 1t.org initiative seems to be faltering as well, with unreliable accounting of the pledges companies submitted to 1t.org and, unsurprisingly, many of these companies engaging in shady carbon-credit transactions. This is also why Jane Goodall’s comment in the article is disagreeable: it isn’t better for these companies to do something vis-à-vis trees than nothing at all because the companies are only furthering an illusion of climate action — claiming to do something while doing nothing at all — and perpetuating the currency of counterproductive ideas like carbon-trading.

A smattering of Benioff’s comments to Bloomberg are presented throughout the profile, as a result of which he might come across like a sage figure — but take them together, in one go, and he sounds actually like a child.

“I think that there’s a lot of people who are attacking nature and hate nature. I’m somebody who loves nature and supports nature.”

This comment follows one by “the climate and energy policy director at the Union of Concerned Scientists”, Rachel Cleetus, that trees “should not be seen as a substitute for the core task at hand here, which is getting off fossil fuels.” But in Bloomberg’s telling, Cleetus is a [checks notes] ‘nature hater’. Similarly, the following thoughtful comment is Benioff’s view of other scientists who criticised the Crowther et al. paper:

“I view it as nonsense.”

Moving on…

“I was in third grade. I learned about photosynthesis and I got it right away.”

This amazing quote appears as the last line of a paragraph; the rest of it goes thus: “Slashing fossil fuel consumption is critical to slowing warming, but scientists say we also need to pull carbon that’s already in the air back out of it. Trees are really good at that, drawing in CO2 and then releasing oxygen.” Then Benioff’s third-grade quote appears. It’s just comedy.

His other statements make for an important reminder of the oft-understated purpose of scientific communication. Aside from being published by a ‘prestige’ journal — Nature — the Crowther et al. paper presented an easy and straightforward solution to reducing the concentration of atmospheric carbon: to fix lots and lots of trees. Even without knowing the specific details of the study’s merits, any environmental scientist in South and Southeast Asia, Africa, and South America, i.e. the “Global South”, would have said this is a terrible idea.

“I said, ‘What? One trillion trees will sequester more than 200 gigatons of carbon? We have to get on this right now. Who’s working on this?’”

“Everybody agreed on tree diplomacy. I was in shock.”

“The greatest, most scalable technology we have today to sequester carbon is the tree.”

The countries in these regions have become sites of aggressive afforestation that provide carbon credits for the “Global North” to encash as licenses to keep emitting carbon. But the flip sides of these exercises are: (i) only some areas are naturally amenable to hosting trees, and it’s not feasible to plant them willy-nilly through ecosystems that don’t naturally support them; (ii) unless those in charge plant native species, afforestation will only precipitate local ecosystem decline, which will further lower the sequestration potential; (iii) unafforested land runs the risk of being perceived as ‘waste land’, sidelining the ecosystem services provided by wetlands, deserts, grasslands, etc.; and (iv) many of these countries need to be able to emit more carbon before being expected to reach net-zero, in order to pull their populations out of poverty and become economically developed — the same right the “Global North” countries had in the 19th and 20th centuries.

Scientists have known all this from well before the Crowther et al. paper turned up. Yet Benioff leapt for it the moment it appeared, and was keen on seeing it to its not-so-logical end. It’s impossible to miss the fact that his being worth $10 billion didn’t encourage him to use all that wealth and his clout to tackle the more complex actions in the soup of all actions that make up humankind’s response to climate change. Instead, he used his wealth to go for an easy way out, while dismissing informed criticism of it as “nonsense”

In fact, a similar sort of ‘ease-seeking’ is visible in the Crowther et al. paper as well, as brought out in a comment published by Veldman et al. In response to this, Crowther et al. wrote in October 2019 that their first paper simply presented value-neutral knowledge and that it shouldn’t be blamed for how it’s been construed:

Veldman et al. (4) criticize our results in dryland biomes, stating that many of these areas simply should not be considered suitable for tree restoration. Generally, we must highlight that our analysis does not ever address whether any actions “should” or “should not” take place. Our analysis simply estimated the biophysical limits of global forest growth by highlighting where trees “can” exist.

In fact, the October 2019 correction to Crowther et al., in which the authors walked back on the “trees are the best way” claim, was particularly important because it has come to mirror the challenges Benioff has found himself facing through 1t.org: it isn’t just that there are other ways to improve climate mitigation and adaptation, it’s that those ways are required, and giving up on them for any reason could never be short of a moral hazard, if not an existential one.

Featured image credit: Dawid Zawiła/Unsplash.

The “coherent water” scam is back

By: VM

On May 7, I received a press release touting a product called “coherent water” made by a company named Analemma Water India. According to the document, “coherent water” is based on more than “15 years of rigorous research and development” and confers “a myriad … health benefits”.This “rigorous research” is flawed research. There’s definitely such a thing as “coherent water” and it’s indistinguishable from regular water at all scales. The “coherent water” scam has reared its serpentine head before with the names “hexagonal water”, “structured water”, “polywater”, “exclusion zone water”, and water with one additional hydrogen and oxygen atom each, i.e. “H3O2”. Analemma’s “Mother Water”, which is its brand name for “coherent water”, itself is a rebranding of a product called “Somarka” that hit the Indian market in 2021.

The scam here is that the constituent molecules of “coherent water” get together to form hexagonal structures that persist indefinitely. And these structures distinguish “coherent water”, giving it wonderful abilities like possessing a greater energy content than regular water, boosting one’s “life force”, and — this one I love — being able to “encourage” other water molecules around it to form similar hexagonal assemblages.

I hope people won’t fall for this hoax but I know some will. But thanks to the lowest price of what Analemma is offering — a vial of “Mother Water” that it claims is worth $180 (Rs 15,000) — it’ll be some rich buggers and I think that’s okay. Fools, their wealth, and all that. Then again, it’s somewhat saddening that while (some) people are fighting to keep junk foods and bad medicines out of the market, we have “coherent water” companies and their PR outfits bravely broadcasting their press releases to news publications (and at least one publishing it) at around the same time.

If you’re curious about the issue with “coherent water”: At room temperature and pressure, the hydrogen atoms of water keep forming and breaking weak bonds with other hydrogen atoms. These bonds last for a very small duration and give water its high boiling point and ice crystals their characteristic hexagonal structure.

Sometimes water molecules organise themselves using these bonds into a hexagonal structure as well. But these formations are very short-lived because the hydrogen bonds last only around 200 quadrillionths of a second at a time, if not lower. According to the hoax, however, in “coherent water”, the hydrogen bonds continue to hold such that its water molecules persist in long-lived hexagonal clusters. But this conclusion is not supported by research — nor is the  claim that, “When swirled in normal water, the [magic water] encourages chaotic and irregular H2O molecules to rearrange into the same liquid crystalline structure as the [magic water]. What’s more, the coherent structure is retained over time – this stability is unique to Analemma.”

I don’t think this ability is unique to the “Mother Water”. In 1963, a scientist named Felix Hoenikker invented a variant of ice that, when it came in contact with water cooler than 45.8º C, quickly converted it to ice-nine as well. Sadly Hoenikker had to abandon the project after he realised the continued use of ice-nine would simply destroy all life on Earth.

Anyway, water that’s neither acidic nor basic also has a few rare hydronium (H3O+) and hydroxide (OH-) ions floating around as well. The additional hydrogen ion — basically a proton — from the hydronium ion is engaged in a game of musical chairs with the protons in the same volume of water, each one jumping to a molecule, dislodging a proton there, which jumps to another molecule, and so on. This is happening so rapidly that the hydrogen atoms in every water molecule are practically being changed several thousand times every minute.

In this milieu, it’s impossible for a fixed group of water molecules to be hanging around. In addition, the ultra-short lifetime of the hydrogen bonds are what makes water a liquid: a thing that flows, fills containers, squeezes between gaps, collects into droplets, etc. Take this ability and the fast-switching hydrogen bonds away, as “coherent water” claims to do by imposing a fixed structure, and it’s no longer water — any kind of water.

Analemma has links to some reports on its website; if you’re up to it, I suggest going through them with a simple checklist of the signs of bad research side by side. You should be able to spot most of the gunk.

The BHU Covaxin study and ICMR bait

By: V.M.

Earlier this month, a study by a team at Banaras Hindu University (BHU) in Varanasi concluded that fully 1% of Covaxin recipients may suffer severe adverse events. One percent is a large number because the multiplier (x in 1/100 * x) is very large — several million people. The study first hit the headlines for claiming it had the support of the Indian Council of Medical Research (ICMR) and reporting that both Bharat Biotech and the ICMR are yet to publish long-term safety data for Covaxin. The latter is probably moot now, with the COVID-19 pandemic well behind us, but it’s the principle that matters. Let it go this time and who knows what else we’ll be prepared to let go.

But more importantly, as The Hindu reported on May 25, the BHU study is too flawed to claim Covaxin is harmful, or claim anything for that matter. Here’s why (excerpt):

Though the researchers acknowledge all the limitations of the study, which is published in the journal Drug Safety, many of the limitations are so critical that they defeat the very purpose of the study. “Ideally, this paper should have been rejected at the peer-review stage. Simply mentioning the limitations, some of them critical to arrive at any useful conclusion, defeats the whole purpose of undertaking the study,” Dr. Vipin M. Vashishtha, director and pediatrician, Mangla Hospital and Research Center, Bijnor, says in an email to The Hindu. Dr. Gautam Menon, Dean (Research) & Professor, Departments of Physics and Biology, Ashoka University shares the same view. Given the limitations of the study one can “certainly say that the study can’t be used to draw the conclusions it does,” Dr. Menon says in an email.

Just because you’ve admitted your study has limitations doesn’t absolve you of the responsibility to interpret your research data with integrity. In fact, the journal needs to speak up here: why did Drug Safety publish the study manuscript? Too often when news of a controversial or bad study is published, the journal that published it stays out of the limelight. While the proximal cause is likely that journalists don’t think to ask journal editors and/or publishers tough questions about their publishing process, there is also a cultural problem here: when shit hits the fan, only the study’s authors are pulled up, but when things are rosy, the journals are out to take credit for the quality of the papers they publish. In either case, we must ask what they actually bring to the table other than capitalising on other scientists’ tendency to judge papers based on the journals they’re published in instead of their contents.

Of course, it’s also possible to argue that unlike, say, journalistic material, research papers aren’t required to be in the public interest at the time of publication. Yet the BHU paper threatens to undermine public confidence in observational studies, and that can’t be in anyone’s interest. Even at the outset, experts and many health journalists knew observational studies don’t carry the same weight as randomised controlled trials as well as that such studies still serve a legitimate purpose, just not the one to which its conclusions were pressed in the BHU study.

After the paper’s contents hit the headlines, the ICMR shot off a latter to the BHU research team saying it hasn’t “provided any financial or technical support” to the study and that the study is “poorly designed”. Curiously, the BHU team’s repartee to the ICMR’s makes repeated reference to Vivek Agnihotri’s film The Vaccine War. In the same point in which two of these references appear (no. 2), the team writes: “While a study with a control group would certainly be of higher quality, this immediately points to the fact that it is researchers from ICMR who have access to the data with the control group, i.e. the original phase-3 trials of Covaxin – as well publicized in ‘The Vaccine War’ movie. ICMR thus owes it to the people of India, that it publishes the long-term follow-up of phase-3 trials.”

I’m not clear why the team saw fit to appeal to statements made in this of all films. As I’ve written earlier, The Vaccine War — which I haven’t watched but which directly references journalistic work by The Wire during and of the pandemic — is most likely a mix of truths and fictionalisation (and not in the clever, good-faith ways in which screenwriters adopt textual biographies for the big screen), with the fiction designed to serve the BJP’s nationalist political narratives. So when the letter says in its point no. 5 that the ICMR should apologise to a female member of the BHU team for allegedly “spreading a falsehood” about her and offers The Vaccine War as a counterexample (“While ‘The Vaccine War’ movie is celebrating women scientists…”), I can’t but retch.

Together with another odd line in the latter — that the “ICMR owes it to the people of India” — the appeals read less like a debate between scientists on the merits and the demerits of the study and more like they’re trying to bait the ICMR into doing better. I’m not denying the ICMR started it, as a child might say, but saying that this shouldn’t have prevented the BHU team from keeping it dignified. For example, the BHU letter reads: “It is to be noted that interim results of the phase-3 trial, also cited by Dr. Priya Abraham in ‘The Vaccine War’ movie, had a mere 56 days of safety follow-up, much shorter than the one-year follow-up in the IMS-BHU study.” Surely the 56-day period finds mention in a more respectable and reliable medium than a film that confuses you about what’s real and what’s not?

In all, the BHU study seems to have been designed to draw attention to gaps in the safety data for Covaxin — but by adopting such a provocative route, all that took centerstage was its spat with the ICMR plus its own flaws.

The billionaire’s solution to climate change

By: V.M.

On May 3, Bloomberg published a profile of Salesforce CEO Marc Benioff’s 1t.org project to plant or conserve one trillion trees around the world in order to sequester 200 gigatonnes of carbon every year. The idea reportedly came to Benioff from Thomas Crowther’s infamous September 2015 paper in Nature that claimed restoring trees was the world’s best way to ‘solve’ climate change.

Following pointed criticism of the paper’s attitude and conclusions, they were revised to a significant extent in October 2019 to tamper predictions about the carbon sequestration potential of the world’s trees and to withdraw its assertion that no other solution could work better than planting and/or restoring trees.

According to Bloomberg’s profile, Benioff’s 1t.org initiative seems to be faltering as well, with unreliable accounting of the pledges companies submitted to 1t.org and, unsurprisingly, many of these companies engaging in shady carbon-credit transactions. This is also why Jane Goodall’s comment in the article is disagreeable: it isn’t better for these companies to do something vis-à-vis trees than nothing at all because the companies are only furthering an illusion of climate action — claiming to do something while doing nothing at all — and perpetuating the currency of counterproductive ideas like carbon-trading.

A smattering of Benioff’s comments to Bloomberg are presented throughout the profile, as a result of which he might come across like a sage figure — but take them together, in one go, and he sounds actually like a child.

“I think that there’s a lot of people who are attacking nature and hate nature. I’m somebody who loves nature and supports nature.”

This comment follows one by “the climate and energy policy director at the Union of Concerned Scientists”, Rachel Cleetus, that trees “should not be seen as a substitute for the core task at hand here, which is getting off fossil fuels.” But in Bloomberg’s telling, Cleetus is a [checks notes] ‘nature hater’. Similarly, the following thoughtful comment is Benioff’s view of other scientists who criticised the Crowther et al. paper:

“I view it as nonsense.”

Moving on…

“I was in third grade. I learned about photosynthesis and I got it right away.”

This amazing quote appears as the last line of a paragraph; the rest of it goes thus: “Slashing fossil fuel consumption is critical to slowing warming, but scientists say we also need to pull carbon that’s already in the air back out of it. Trees are really good at that, drawing in CO2 and then releasing oxygen.” Then Benioff’s third-grade quote appears. It’s just comedy.

His other statements make for an important reminder of the oft-understated purpose of scientific communication. Aside from being published by a ‘prestige’ journal — Nature — the Crowther et al. paper presented an easy and straightforward solution to reducing the concentration of atmospheric carbon: to fix lots and lots of trees. Even without knowing the specific details of the study’s merits, any environmental scientist in South and Southeast Asia, Africa, and South America, i.e. the “Global South”, would have said this is a terrible idea.

“I said, ‘What? One trillion trees will sequester more than 200 gigatons of carbon? We have to get on this right now. Who’s working on this?’”

“Everybody agreed on tree diplomacy. I was in shock.”

“The greatest, most scalable technology we have today to sequester carbon is the tree.”

The countries in these regions have become sites of aggressive afforestation that provide carbon credits for the “Global North” to encash as licenses to keep emitting carbon. But the flip sides of these exercises are: (i) only some areas are naturally amenable to hosting trees, and it’s not feasible to plant them willy-nilly through ecosystems that don’t naturally support them; (ii) unless those in charge plant native species, afforestation will only precipitate local ecosystem decline, which will further lower the sequestration potential; (iii) unafforested land runs the risk of being perceived as ‘waste land’, sidelining the ecosystem services provided by wetlands, deserts, grasslands, etc.; and (iv) many of these countries need to be able to emit more carbon before being expected to reach net-zero, in order to pull their populations out of poverty and become economically developed — the same right the “Global North” countries had in the 19th and 20th centuries.

Scientists have known all this from well before the Crowther et al. paper turned up. Yet Benioff leapt for it the moment it appeared, and was keen on seeing it to its not-so-logical end. It’s impossible to miss the fact that his being worth $10 billion didn’t encourage him to use all that wealth and his clout to tackle the more complex actions in the soup of all actions that make up humankind’s response to climate change. Instead, he used his wealth to go for an easy way out, while dismissing informed criticism of it as “nonsense”

In fact, a similar sort of ‘ease-seeking’ is visible in the Crowther et al. paper as well, as brought out in a comment published by Veldman et al. In response to this, Crowther et al. wrote in October 2019 that their first paper simply presented value-neutral knowledge and that it shouldn’t be blamed for how it’s been construed:

Veldman et al. (4) criticize our results in dryland biomes, stating that many of these areas simply should not be considered suitable for tree restoration. Generally, we must highlight that our analysis does not ever address whether any actions “should” or “should not” take place. Our analysis simply estimated the biophysical limits of global forest growth by highlighting where trees “can” exist.

In fact, the October 2019 correction to Crowther et al., in which the authors walked back on the “trees are the best way” claim, was particularly important because it has come to mirror the challenges Benioff has found himself facing through 1t.org: it isn’t just that there are other ways to improve climate mitigation and adaptation, it’s that those ways are required, and giving up on them for any reason could never be short of a moral hazard, if not an existential one.

Featured image credit: Dawid Zawiła/Unsplash.

The “coherent water” scam is back

By: V.M.

On May 7, I received a press release touting a product called “coherent water” made by a company named Analemma Water India. According to the document, “coherent water” is based on more than “15 years of rigorous research and development” and confers “a myriad … health benefits”.This “rigorous research” is flawed research. There’s definitely such a thing as “coherent water” and it’s indistinguishable from regular water at all scales. The “coherent water” scam has reared its serpentine head before with the names “hexagonal water”, “structured water”, “polywater”, “exclusion zone water”, and water with one additional hydrogen and oxygen atom each, i.e. “H3O2”. Analemma’s “Mother Water”, which is its brand name for “coherent water”, itself is a rebranding of a product called “Somarka” that hit the Indian market in 2021.

The scam here is that the constituent molecules of “coherent water” get together to form hexagonal structures that persist indefinitely. And these structures distinguish “coherent water”, giving it wonderful abilities like possessing a greater energy content than regular water, boosting one’s “life force”, and — this one I love — being able to “encourage” other water molecules around it to form similar hexagonal assemblages.

I hope people won’t fall for this hoax but I know some will. But thanks to the lowest price of what Analemma is offering — a vial of “Mother Water” that it claims is worth $180 (Rs 15,000) — it’ll be some rich buggers and I think that’s okay. Fools, their wealth, and all that. Then again, it’s somewhat saddening that while (some) people are fighting to keep junk foods and bad medicines out of the market, we have “coherent water” companies and their PR outfits bravely broadcasting their press releases to news publications (and at least one publishing it) at around the same time.

If you’re curious about the issue with “coherent water”: At room temperature and pressure, the hydrogen atoms of water keep forming and breaking weak bonds with other hydrogen atoms. These bonds last for a very small duration and give water its high boiling point and ice crystals their characteristic hexagonal structure.

Sometimes water molecules organise themselves using these bonds into a hexagonal structure as well. But these formations are very short-lived because the hydrogen bonds last only around 200 quadrillionths of a second at a time, if not lower. According to the hoax, however, in “coherent water”, the hydrogen bonds continue to hold such that its water molecules persist in long-lived hexagonal clusters. But this conclusion is not supported by research — nor is the  claim that, “When swirled in normal water, the [magic water] encourages chaotic and irregular H2O molecules to rearrange into the same liquid crystalline structure as the [magic water]. What’s more, the coherent structure is retained over time – this stability is unique to Analemma.”

I don’t think this ability is unique to the “Mother Water”. In 1963, a scientist named Felix Hoenikker invented a variant of ice that, when it came in contact with water cooler than 45.8º C, quickly converted it to ice-nine as well. Sadly Hoenikker had to abandon the project after he realised the continued use of ice-nine would simply destroy all life on Earth.

Anyway, water that’s neither acidic nor basic also has a few rare hydronium (H3O+) and hydroxide (OH-) ions floating around as well. The additional hydrogen ion — basically a proton — from the hydronium ion is engaged in a game of musical chairs with the protons in the same volume of water, each one jumping to a molecule, dislodging a proton there, which jumps to another molecule, and so on. This is happening so rapidly that the hydrogen atoms in every water molecule are practically being changed several thousand times every minute.

In this milieu, it’s impossible for a fixed group of water molecules to be hanging around. In addition, the ultra-short lifetime of the hydrogen bonds are what makes water a liquid: a thing that flows, fills containers, squeezes between gaps, collects into droplets, etc. Take this ability and the fast-switching hydrogen bonds away, as “coherent water” claims to do by imposing a fixed structure, and it’s no longer water — any kind of water.

Analemma has links to some reports on its website; if you’re up to it, I suggest going through them with a simple checklist of the signs of bad research side by side. You should be able to spot most of the gunk.

❌